Development of comprehensive chemical kinetic mechanism for ammonia/methanol mixture

S. Nadiri^{1,2*}, B. Shu^{1,2}, R. Fernandes^{1,2}

¹ Department of Physical Chemistry, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany

² Cluster of Excellence SE2A—Sustainable and Energy-Efficient Aviation, Technische Universität Braunschweig, 38106 Braunschweig, Germany

Abstract

A thorough understanding of ignition delay time (IDT) is essential for engine design and validation of chemical kinetic mechanisms for alternative fuels such as ammonia (NH₃). The low reactivity of NH₃ restricts its application in the transport sector, whereas adding methanol (CH₃OH) as a combustion promoter enhances the reactivity. The fundamental chemistry in the combustion of newly proposed fuels can be studied using the detailed chemical kinetic mechanism. In this work, a kinetic model for auto-ignition of the NH₃/CH₃OH fuel blend was automatically generated by RMG, which contains four new reactions. Two of these estimated reactions by RMG are the H atom abstraction of CH₃OH by NH₂ radical, where the calculation of the reaction rates was repeated by ab-initio calculation. The ab-initio calculations showed more reliability than RMG results compared to the reaction rates of the same class of reactions in literature. Then an in-house algorithm was developed to reduce the size of the mechanism to 460 reactions.

The mechanism was validated using the experimental results for the IDT of NH₃/CH₃OH from the literature at high pressures and intermediate to high temperatures for fuel mixtures containing 1-20% CH₃OH. Also, numerical simulations of LBV of NH₃/CH₃OH mixtures containing 20-80% of CH₃OH at atmospheric pressure were compared to experimental data to help in the further validation of the generated mechanism. The model provided the analysis of reaction rates and sensitivity analyses. Further investigation with the kinetic model showed that the reactions involving C- and N-containing species are significant for the autoignition of different NH₃/CH₃OH mixtures.