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1 Introduction 

Numerical simulations of reacting flows are constrained by mainly two factors: large dimensionality 

due to the number of chemical species involved, and stiffness associated to the wide spectrum of 

chemical timescales. Such burden can be alleviated by the use of tabulated manifolds, where the state-

space is parameterized using a reduced number of variables capable of describing the most important 

features of a flame. Those a priori tabulations lead to extensive computational savings by keeping 

sufficient (desirable) accuracy. However, in systems where dynamical features are of interest (such as 

transient phenomena, re-ignition, soot formation, etc.), direct integration of chemical ODEs is more 

suitable. Moreover, Direct Numerical Simulations (DNS) with detailed chemistry are often employed 

to investigate key features in combustion regimes operating under high Reynolds, Karlovitz and 

Damköhler numbers. As a consequence, these simulations either strongly limit the time-steps of explicit 

integration schemes, or require implicit (multi-step) integration methods which in turn increases the 

computational cost even further.  

To mitigate the cost of stiff kinetics ODEs in flow solvers, an adaptive ODE integration explicit scheme 

for stiff chemistry was proposed based on the Computational Singular Perturbation (CSP) theory [1-5]. 

This CSP solver [6] exploits the existence of a local low-dimensional manifold, based on the CSP 

fast/slow decomposition, to adaptively remove stiffness by filtering out the fast scales from the vector 

of chemical source terms. The result is a set of non-stiff equations which can be integrated using explicit 

schemes with larger time-steps. However, the CSP solver relies on the calculation of an expensive on-

the-fly basis, called the CSP projector, which is obtained from the eigensystem of the Jacobian matrix 

of the local chemical source term. This basis is computed at each time-step, and the associated cost can 

quickly become prohibitive for large mechanisms as it scales with 𝑁2.5 to 𝑁3 , where 𝑁 is the total 

number of species. To tackle this, the present study proposes to couple the CSP solver with Principal 

Component Analysis [7], and in particular to exploit the advantage offered by the Manifold Generated 

from PCA (MG-PCA) model [8-9]. MG-PCA allows to create a reduced-order model by identifying a 

subset of species which are explicitly solved, while the unresolved species are reconstructed using the 
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PCA basis. By constraining the CSP solver to the subset of species identified by MG-PCA, the size of 

the Jacobian matrix can be reduced, accelerating the calculation of the CSP projector. The subset of 

ODEs can then be integrated along the MG-PCA manifold, and the remaining unresolved variables can 

be reconstructed at each time-step using the linear PCA basis. 

2 The CSP-PCA Framework  

Given any partitioning of the N species in two categories of resolved species (𝒖) of size n and unresolved 

species (𝒗) of size m (with 𝑛 + 𝑚 = 𝑁) and given a manifold 𝒗 = 𝐹(𝒖) that constrains the system to a 

lower-dimensional subspace, the system can be evolved in time along the reduced-order manifold (where 

only the resolved species are evolved in time) and subsequently, the manifold constrain is applied in 

order to update the unresolved species. The size of the eigensystem to be solved by the CSP solver 

depends on the nature of the manifold 𝐹. 

If 𝐹 is the CSP manifold, then the species partitioning [𝒖|𝒗] is a slow-fast partitioning and therefore the 

source term constrained to 𝐹 is freed from the fast scales. However, the identification of 𝐹 requires the 

solution of a (𝑁 + 1)×(𝑁 + 1) eigensystem. The details on the CSP algorithm can be found in [10]. 

If 𝐹 is any other manifold (such as the MG-PCA manifold), then the [𝒖|𝒗] partitioning is not a slow-

fast one, and the source term is still contaminated by fast scales. However, the dimension of such 𝐹 is 

smaller than the full system (𝑛 < 𝑁), therefore reducing the computational cost associated with the 

eigensystem. In addition, MG-PCA has the advantage of providing a linear functional expression 

between the resolved and unresolved variables, 𝒗 = 𝐹𝑃𝐶𝐴(𝒖) = 𝒖 ∙ 𝑩  where 𝑩 ∈ ℝ𝑛×𝑁  is a linear 

matrix. The details of the MG-PCA reconstruction are given in [11]. 

Constraining the Jacobian matrix to a low-dimensional manifold requires the evaluation of a Constrained 

Jacobian matrix 𝐽𝐶 ∈ ℝ𝑛×𝑛 as follows:  

 

𝐽𝐶 =
𝜕𝑔𝑖(𝒖, 𝒗)

𝜕𝑢𝑗
+

𝜕𝑔𝑖(𝒖, 𝒗)

𝜕𝑣𝛼

𝜕𝑣𝛼

𝜕𝑢𝑗
             𝑖, 𝑗 = 1, 𝑛     𝛼 = 1, 𝑚 

 

where 𝑔𝑖 is the chemical source term of species 𝑖. The evaluation of the derivative 𝜕𝑣𝛼 𝜕𝑢𝑗⁄  is directly 

obtained from the linear expression provided by MG-PCA, i.e. 𝒗 = 𝒖 ∙ 𝑩. 

 

3 Application – Homogeneous Reactor 

The proposed reduced CSP-PCA model is compared to the classical (detailed) CSP in a 0𝐷 constant-

pressure reactor using the PyCSP Python package [12]. The initial condition is a stoichiometric mixture 

of NH3/air at 1400 K and 1 atm. The detailed kinetic mechanism of Zhang et al. [13] was used, consisting 

of 36 species and 258 reactions. 

The MG-PCA training data was generated using the same setup by varying the initial temperature from 

1400 K to 1500 K. The final data set contained 50,000 observations for each of the state-space variables. 

All of the data points were used collectively for the PCA analysis. Using the B2 backward selection 

method [14] with pareto scaling [15], 22 species were identified that would allow for a quasi-exact 

reconstruction of the other species. In MG-PCA, the minimum number of retained species is constrained 

by the reconstruction accuracy of the discarded species. 
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The detailed CSP is therefore based on a Jacobian of size (36+1), while the reduced model has a 

constrained Jacobian of size (22+1).  

 

 3.1 Timescales analysis 

Figure 1 shows the eigenvalues (inverse of timescales) of the full and reduced model for the 0𝐷 reactor. 

The (𝑀 + 1)-th eigenvalue evolution is also shown in orange, where 𝑀 is the number of exhausted 

modes representing the fast timescales of the system (the lower 𝑀, the faster the chemical activity). The 

(𝑀 + 1)-th eigenvalue therefore represents the fastest timescale of the slow dynamics, which determines 

the integration time-step. Indeed, as explained in [10], the larger 𝑀, the smaller the number of truly 

active (slow) degrees of freedom, the larger the time-step can be. The fast/exhausted eigenvalues are the 

ones above the orange line on Fig. 1. The magnitude of the (𝑀 + 1)-th eigenvalue changes in time 

according the value of 𝑀. It can be observed on Fig. 1 that the reduced model depicts a lower (𝑀 + 1)-

th eigenvalue (higher 𝑀) compared to the full model during some regions of the time evolution, namely 

in the initial phase and after ignition (steady-state). A higher 𝑀 implies a lower number of active modes, 

therefore allowing for larger integration time-steps. 

 

 

Figure 1: Eigenvalues (black) and (𝑀 + 1)-th eigenvalue (orange) against time for the detailed CSP (left) 

and reduced CSP-PCA (right) systems. 

 3.2 Results 

The performance of the reduced CSP-PCA model are compared against the full model inside the CSP 

solver in PyCSP. Figure 2 shows the evolution of temperature and 𝑂𝐻 mole fraction in function of time 

for the 0𝐷 reactor initiated with 𝑇 = 1400 𝐾. It can be seen that the reduced model is able to capture 

the transient evolution of the system, showing a very good agreement with the full CSP model. 

Figure 3 (left) shows the variation of the relative number of exhausted modes 𝑀𝑟𝑒𝑙  (defined as 

𝑀/𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) during the time evolution for the detailed and reduced models, while 

Fig. 3 (right) shows the evolution of the integration time-step. 𝑀𝑟𝑒𝑙 is higher for the reduced CSP-PCA 

model for most of the simulation, confirming the observation made above (Fig. 1). The reduced model 

also allows for larger integration time-steps in some parts of the simulation, leading to a reduction in the 

overall CPU time. Table 1 reports the total CPU time for both cases, showing that the reduced model is 

able to achieve a reduction of ~40% in solver time. This reduction is mainly due to the reduction in size 

of the Jacobian matrix (and therefore also of the eigensystem), and also to some extent to the larger 

integration time-steps in some regions of the simulation. 
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Figure 2: Temperature (left) and 𝑂𝐻 model fraction (right) in function of time for the full CSP case 

(line) and the reduced CSP-PCA model (symbols). 

 

Figure 3: Relative number of exhausted modes 𝑀 (left) and integration time-step (right) in function of 

time for the full CSP case (blue) and the reduced CSP-PCA model (orange). 

 

Table 1: Total CPU time for the full (CSP) and reduced (CSP-PCA) simulations. 

Model Total solver time [s] 

CSP 0.698 

CSP-PCA 0.412 

 

In summary, constraining the CSP solver to a reduced-order manifold identified using PCA allows the 

solver to work in a reduced dimension space (𝑛 < 𝑁). The cost of the eigensystem calculation is 

therefore alleviated, but since the PCA manifold is not equal to the CSP manifold, the reduced system 

still relies on an internal fast/slow decomposition. Nevertheless, the reduced CSP-PCA model allows 

for a significant CPU time reduction while maintaining good accuracy in the prediction of state-space 

variables. 
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