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1 Introduction 

Lithium-ion battery (LIB) fires are linked to the flammability of the electrolyte and pose not only a 

significant safety hazard due to the heat, but also the harmful chemicals that can be released during 

combustion [1]. Therefore, it is imperative to characterize the fundamental chemistry behind the 

electrolyte’s flammability so strategies to prevent batteries from igniting can be designed. LIBs utilize 

an electrolyte mixture as a medium to exchange ions from one pole of the capacitor to another. This 

electrolyte medium consists of many different compounds, but are mainly comprised of carbonates both 

linear and cyclic [2]. One of these common solvents is diethyl carbonate (DEC), a symmetric ester of 

carbonic acid and ethanol taking the form shown in Fig. 1. Additionally, the chemical kinetics of DEC 

combustion is important from a transportation and propulsion perspective, as DEC is also an oxygenated 

additive candidate in diesel fuel [3]. 

 

Figure 1: Molecular structure of diethyl carbonate (DEC). 

 

Several recent studies have investigated the chemical kinetics of DEC combustion both experimentally 

and numerically, with ignition delay time (IDT) measurements from a rapid-compression machine [4] 

and a shock tube (ST) [4], laminar flame speed measurements (LFS) [5], speciation from jet-stirred 

reactors [4,5], flow reactor [6], shock tubes [7,8] and a micro flow reactor with a controlled temperature 

profile [9], as well as ab initio calculations for specific rate constants and reaction pathway identification 

[4,7]. However, a recent study on DEC pyrolysis from our group [8], where CO was followed using a 

laser absorption diagnostic, showed that the ethanol chemistry needed to be updated. Several 

modifications of the DEC mechanism (resulting in the TAMU model) allowed for significant 

improvements for the CO predictions. In the present study, the CO diagnostic is now applied to oxidative 

conditions, and the literature data are further complemented by IDT measurements in ST, and along with 

LFS data that were measured using spherically expanding flames in a constant-volume vessel at initial 

conditions of 403 K and 1 atm. These different experimental apparatuses are presented below before 

presenting the data and the comparisons with the TAMU mechanism as well as others from the literature.  
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2 Experimental Methods  

2.1. Shock Tubes 

For the CO laser absorption experiments, the shock tube used has a driven inner diameter and length of 

16.2 cm and 7.88 m, respectively. Five piezoelectric pressure transducers (PCB P113A22), over the last 

2 m of the shock tube, were employed to detect shock passage and extrapolate the incident-shock 

velocity near the endwall. This velocity is then used to calculate the reflected-shock pressure and 

temperature to within an uncertainty of ±1% and ±0.8%, respectively. Pure helium was used as the 

driving gas. Two sapphire windows at the sidewall location, 1.6 cm upstream from the endwall, are 

mounted transversely to allow laser access. Further details on the AST have been provided previously 

[8].  

The heated, high-pressure shock tube (HPST) facility at Texas A&M University was utilized to measure 

the ignition delay times for DEC. The HPST’s driven section has an inner diameter of 15.24 cm and is 

5.03 m in length. In contrast to the AST, the HPST uses four pressure transducers (PCB 113B22) over 

the last 1.44 m of the shock tube to collect three incident-shock-velocity measurements and extrapolate 

the shock velocity at the endwall location. Further details on the heating system and HPST can be found 

elsewhere [10]. Both shock tubes utilize 0.25-mm thick, polycarbonate diaphragms to initiate shock 

propagation. To facilitate ideal and repeatable diaphragm rupture, a cross-shaped cutting blade is used 

downstream of the diaphragm. 

 

2.2. Optical Diagnostics 

CO time histories were collected from mixtures diluted in 99.25% diluent (20% He, 79.25 % Ar) via 

transversely mounted window ports, 1.6 cm upstream from the endwall. A quantum cascade laser 

producing coherent light near 4.8 μm allowed access to the P(20) 1←0 transition band of CO at 2059.91 

cm-1. A separate cell containing a 10% CO, 90% Ar mixture was introduced into the beam’s path to 

center the laser on this transition line prior to each experiment. Two detectors (InSb) fitted with bandpass 

filters for collection of incident and transmitted light intensities, respectively. Temperature predictions 

made by the TAMU model were used to account for temperature change during the experiment. Previous 

studies performed in similar conditions estimated the uncertainty in CO concentration to be within 

±3.8%. 

For the heated shock tube, IDT experiments with “fuel/air” mixtures were performed, and OH* 

chemiluminescence near 307 nm was observed at the sidewall and endwall locations of the shock tube 

using photomultiplier tubes (Hamamatsu 1P21) in custom housings equipped with UV filters (307 nm 

center, 10 nm FWHM). Ignition delay time is then defined by the difference between the time of shock 

reflection and the linear extrapolation to zero emission of the steepest increase of OH* emission at the 

endwall location. Significant pressure rise due to combustion was observed and can also be used to 

define ignition. 

 

2.3. Flame Speed Vessel 

A heated, stainless steel, constant-volume vessel was used to collect LFS data. The 25.8-L, cylindrical 

vessel has a 31.8-cm internal diameter and is 28-cm in length. Optical access in this vessel is available 

through two opposing, 12.7-cm diameter, glass windows which allow for measurement of the LFS under 

near-constant-pressure conditions. A more detailed description of the vessel can be found in Krejci et al. 

[11]. A custom-fit heating jacket, which can produce a uniform temperature of up to 600 K, was used to 

heat the vessel to avoid fuel condensation. For the present study, the initial temperature and pressure 

were 403 K and 1 atm, respectively. A Photron Fastcam SA1.1 camera, with a rate of 10,000 fps, was 

used in a Z-type schlieren imaging setup to capture the spherically-propagating flame. The collected 

images were then analyzed using an in-house Python code for edge detection and the LFS was then 

calculated using the non-linear equation developed by Chen [12]. A known mass of fuel was introduced 
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to the vessel by injection using a syringe, and the resulting partial pressure of fuel was then recorded 

using a 0-100 Torr pressure gauge. After complete evaporation of the fuel, the vessel is filled with 

synthetic air to 1 atm. The resulting uncertainty in LFS using this experimental setup has been shown 

previously to be within ±1%; however, for the current study, a conservative ±5% is adopted. Gases used 

for both shock-tube and LFS experiments were obtained from Praxair with 99.999% purity and the fuel, 

obtained from Sigma-Aldrich, had an anhydrous purity of ≥ 99%. 

3 Results 

DEC ignition delay times collected near atmospheric pressure over a range of temperatures between 

1182 and 1406 K behind reflected shock waves are shown in Fig. 2 for (a) ϕ = 0.5, (b) ϕ = 1.0, and (c) 

ϕ = 2.0. As can be seen, the evolution of the ignition delay time with the temperature follows the classical 

evolution observed for hydrocarbons at high temperature. Models offer similar predictions (within a 

factor of 2 typically) and are predicting the experimental results with good accuracy overall, within the 

experimental uncertainty for the most part. The global activation energy (corresponding to the slope of 

the model) tends to be slightly higher for the model than what is observed experimentally. This higher 

activation energy leads to divergences between the models and the data below 1250 K for the (b) 

stoichiometric and (c) fuel-rich cases. Note that the difference between the data and model on the low-

temperature side is not due to inhomogeneous ignition in the shock tube, but to the model’s predictions.  

 

 
Figure 2: IDT for DEC/air mixtures at (a)  = 0.5, (b)  = 1.0, (c)  = 2.0, and comparison with model 

predictions. 

 

The laminar flame speed results obtained during this study are visible in Fig. 3, where the classical curve 

peaking at around ϕ = 1.1 is obtained. The maximum laminar flame speed obtained experimentally is 

55.6 cm/s, at 403 K and 1 atm for the initial conditions. As one can see in Fig. 3, the models considered 

herein are all within the experimental uncertainty (which appears large only because the y axis of the 

graph ranges between 40 and 60 cm/s), but they all fall under the experimental measurements. Among 

these models, the TAMU, Shahla, and Nakamura models are the closest to the data. They also present 

nearly identical predictions for stoichiometric and fuel-rich mixtures. At fuel-lean conditions, the Shahla 

model offers marginally better predictions. 
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Figure 3: Laminar flame speed results from this study at initial conditions of 1 atm and 403 K compared 

to model predictions from the present study and those from the literature. 

 

Experiments conducted under high dilution (79.25% Ar and 20% He) at fuel lean (a-c), stoichiometric 

(d-f) and fuel-rich (g-i) cases are shown in Fig. 4 for high-, mid-, and low-temperature conditions. As 

one can see, for the high- and medium-temperature cases for the fuel-lean and stoichiometric mixtures, 

a peak in the CO concentration is reached after a delay that increases when the temperature decreases. 

After this initial rapid formation of CO, the carbon monoxide concentration decreases with time due to 

the oxidation of CO into CO2. On the other hand, for the fuel-rich case, the peak is not as well defined, 

and the CO reaches a plateau level. This plateau is to be expected and is typically observed for mixtures 

when the oxygen concentration is insufficient to fully oxidize the fuel. 

Concerning the models, the shape of the profiles and experimental trends are well captured by all models 

for the fuel-lean and stoichiometric cases. Little difference is seen between the models by Nakamura, 

Sun, and Takahashi, each basically builds on the earlier, but little change is observed for the CO 

concentration measurements. The CO concentration at the peak tends to be over-estimated by 10-15% 

by these models, and they also tend to be slightly over-reactive for the fuel-lean condition. At fuel-lean 

conditions, the Shahla model presents very similar predictions to those models but is however in better 

agreement with the time-to-peak timing observed for the experiments at  = 0.5 (Fig. 4b). Lastly for the 

fuel-lean and stoichiometric mixtures, the TAMU model predicts lower levels of CO at the peak, in 

better agreement with the experimental data, but this model is also more reactive, which induces a peak 

CO found earlier than the experimental one, notably at intermediate temperatures. For the fuel-rich case, 

the experimental profile at high temperature (Fig. 4g) is not captured by the models, and the CO level 

at the plateau is significantly over-predicted by nearly 50%. At intermediate temperatures (Fig. 4h), the 

shape is better predicted (at least during the timeframe of the experiment) and the TAMU model is still 

over-reactive (all the other models being extremely close in terms of predictions). However, at this 

condition, the difference between the models and the experimental profile is only 20-25% for the CO 

concentration. This result is rather surprising for the TAMU model, as it predicts much smaller 

concentration of CO compared to the other models in pyrolysis condition. Thus, the results of the present 

study seem to indicate the presence and preference of an alternative route for CO formation that uses 

the O2 present in the mixture. 
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Figure 4: High-, mid-, and low-temperature traces (left to right) for ϕ = 0.5 (a-c), 1.0 (d-f) and 2.0 cases 

(g-I, top to bottom). Modeling results are also shown for the mechanism from the present study (bold 

blue dashes), as well as those from Nakamura et al. (red dashes), Sun et al. (green dash-dots), Shahla et 

al. (pink dots), and Takahashi et al. (grey line). 

 

4 Conclusions 

The combustion chemistry of DEC was investigated experimentally by measuring a large variety of 

combustion parameters such as ignition delay time, laminar flame speed, and CO time histories over a 

wide range of conditions and near-atmospheric pressure. These results were compared with detailed 

kinetics models from the literature, and the comparison shows that the global kinetics data (ignition 

delay time and laminar flame speed) are accurately predicted by all models considered. On the other 

hand, the kinetics measurement of CO showed room for improvement for the models. A numerical 

analysis was conducted, and this analysis exhibited a complex chemistry, with several pathways 

involved at different times. It is likely that the CO formation from C2 species, notably C2H4, as described 

in the models is the reason behind the inaccurate predictions during DEC combustion. The authors 

believe that a complementary shock tube, laser-absorption based study of the CO formation during C2H4 

oxidation would be necessary to clarify and possibly solve this issue. 
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