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1 Introduction

The chemical reaction of two supersonic flow streams of fuel and oxidizer is of great interest to the
development of advanced hypersonic systems for aircraft propulsion such as scramjets. A large number
of numerical studies have provided fundamental insights and valuable explanations to the dynamics and
flow structure of supersonic mixing layers [1-3] and to their reactive extension [4-6]. It is well known
that the inlet condition can have strong influence on the growth rate of the mixing layer, the formation
of coherent structures and the roll-up characteristics [7]. However, to the best of the authors knowledge,
little debate has been presented on the virtual origin of canonical compressible mixing layers. In par-
ticular, Sandham and Reynolds [8] explored some of the numerical modifications of the inlet plane in
incompressible mixing layers by comparing typical hyperbolic tangent and wake-type modified velocity
profiles. Ko et al. [9] explored the effect of perturbing the inflow of the incompressible mixing layer. On
the other hand, the vast majority of numerical studies have focused on the temporal evolution of shear
and mixing layers due to computational costs and because they provide a satisfactory approximation of
the laboratory spatially-developing mixing layers; however, this correlation is only valid when the slip
velocity between the two streams is smaller than the convective velocity [10]. For high-speed flows such
as the ones addressed herein, this assumption is inaccurate and needs to be revisited.

In particular, the numerical study of supersonic coflows demands the choice of appropriate inlet con-
ditions that describe the inner structure of the mixing layer. Typically, this is carried out by assuming
a smooth hyperbolic function in the form: U(y) ~ tanh™!(y/d), where y is the transverse coordi-
nate, J is a characteristic mixing layer thickness (typically, the initial vorticity thickness d,, ), and U
is the streamwise velocity function [8, 11]. This formulation suffices to describe most of the canonical
shear layers. Mixing layers, on the other hand, demand the definition of inner profiles for each of the
species in the mixture Y;(y), with the values determined by far-field conditions: [Uy, Y; 1] for the upper
stream and [Us, Y; o] for the lower one. In addition, temperature has a major relevance as it affects
the density and, therefore, the inertia of the flow. Moreover, temperature is also involved in the defini-
tion of the upper and lower stream Mach numbers, M; = Uy /c; and My = Usy/ca, respectively, with
c= \/ yp/p = \/ vR,T standing for the sound speed, v = ¢,/c, and R, being the ratio of specific
heats and the gas constant, respectively, and p and p referring to pressure mixture and density. The latter
is directly related to the mass fraction of the species involved through Y; = p;/p. Therefore, as long as
thermal diffusion is of the same order as species diffusion in gases, that is Lewis number Le ~ O(1),
temperature profiles are key to describe the mixing layer developing thickness.
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Figure 1: Sketch of the laminar mixing layer domains and the arbitrary choice of the inlet conditions in
the virtual computational domain.

The effect of imposing different inner profiles of the state variables on the ignition distance of a super-
sonic mixing layer problem is explored here. In particular, the problem of a supersonic hydrogen—air
mixing layer, similar to the experiment conducted by Cheng et al. [12], is investigated using direct
numerical simulations. A sketch of the setup with the computational domain used for numerical simu-
lations and the arbitrary choice of the inlet conditions is shown in Fig. 1. It can be seen that boundary
conditions for U, Y;, and T for each stream must be provided to define a well-posed mathematical prob-
lem. The choice of the inlet condition may have a potential impact in the prediction of the autoignition
distance, particularly in high-speed reactive mixing layers where a variation of the order of milliseconds
in the autoignition time, owing to a miss-calculation of the mixing layer state, is translated into distances
of the order of meters, the characteristic length of a supersonic combustion chamber. In the following,
the ideal gas law is assumed for both streams and, since the mixture is mostly made of diatomic gases
at conditions of interest, the adiabatic index is taken constant, y; = 72 = v = 7/5. Besides, pres-
sure is assumed to be uniform at the inlet, so the following relationships apply to molecular weights,
Wipo Ty = Wapi T, and Mach numbers, MUz, /p1 = MaUy,/p1 outside of the mixing layer.

1.1 Hyperbolic functions for the inlet variables

The arbitrariness in the inlet condition relies in the choice of the inner profiles for the mixing layer. For
example, Fig. 1 depicts the laminar mixing layer domains and the arbitrary choice of the inlet conditions
in the computational domain. Beforehand, we could make use of the hyperbolic inlet condition for either
of the independent variables, namely
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where § = y/0 is the scaled order-of-unity transverse coordinate and ¢ represents any suitable inlet
conditions for the streamwise velocity (transverse velocity is set to a zero value), temperature, and N —1
species mass fractions. On condition that pressure is uniform and known, Ziv Y; = 1 and the equation
of state are used to compute the N™ species and the density field. In our case, the mixture composition
in the upper and lower streams is given by Yy, 1 = 0, Yo, 1 = 0.233,and Yy, 1 = 0.767,and Yp, 2 = 1
and Yp, 2 = Yn, 2 = 0, respectively. By choosing also the velocity and the temperature of the outer
streams [Uy, T1] and [Us, T3], the rest of the flow variables can be derived, as stated above. A widely-
used approach to prescribe these quantities is the Buseman—Crocco velocity—temperature relation [3, 5],
a very particular choice far from validity in general applications.
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Alternatively, the Mach number profile could be imposed to follow the hyperbolic relation given by
Eq. (1) so that U must be transformed into a dependent variable. This inlet condition for M (y) is
appealing as it directly provides the convective Mach number M. = M; — M5 as an input parameter,
which is known to play a dominant role in the description of the laminar—turbulent flow transition in
high-speed conditions. Nevertheless, for hydrogen—air mixing layers, the stream containing hydrogen
is much lighter than the oxidizer stream, and thermodiffusive effects can play an important role on the
composition and thermal field along the mixing layer development. In fact, none of the above-prescribed
hyperbolic inlet conditions occurs as the natural solution of a truly evolving mixing layer.

1.2 Self-similar mixing layer for the inlet variables

A more appropriate definition of the inlet condition is based on the assumption that the flow evolves
laminarly from the leading edge of the thin splitter plate. Here, the relevant Reynolds number of the
flow Re = p1Uy1L,/ 1, is based on the velocity Uy, density p;, and shear viscosity pq of the up-
per stream. It results in a slender mixing layer, whose characteristic thickness increases according to
[(11/p1)20/U1]Y/2, reaching a value of 6, ~ O(Re '/2L,) < L, at z, = L,. Since nitrogen and oxy-
gen have similar molecular weights, the ratio of the species along the mixing layer can be assumed to be
constant until the autoignition point. Consequently, it can be assumed that the mixing process is equiv-
alent to that of a binary mixture between fuel and air. Therefore, the corresponding fuel diffusion flux,
non-dimensionalized by [p11U7 /L) 1/2_ can be computed with an explicit form [13,14], as given by the
second equality in (5). It accounts for mass and thermal diffusion, the latter having a significant effect
for hydrogen. Here, T = T'/T} and p = p/p1 correspond to the dimensionless temperature and density
functions, respectively, and 1) = y/[(111 /p1)x/U1]/? represents the order-of-unity self-similar variable.
The Prandtl number Pr = pc,/X = 0.7 throughout the non-reactive zone, with A and ¢, representing
the thermal conductivity and the specific heat at constant pressure of the mixture, respectively. The ratio
of the thermal diffusivity A\/(pc,) to the fuel-air binary diffusion coefficient D is the so-called Lewis
number Le = \1/(p1cp1 D1) that includes the dimensionless binary diffusion coefficient D = D/Dj.
The thermal diffusion factor «, defined as the ratio of the thermal diffusion coefficient to the product
Y (1 —Y)pD, is taken constant, with o &~ —0.3 for hydrogen—air mixtures [14].

Considering the scaling of the quantities with the above dimensionless variables, the conservation equa-
tions for the boundary value problem used to define the inlet conditions can be written as:
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where & = u/Uy, 0 = v/U1(Lo/do), i = p/ 1, €p = ¢p/cp1 and w = W/W; are the shear viscosity,
specific heat, and mean molecular weight scaled with their air stream values. The above equations must
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Figure 2: (a) Nondimensional flow variables and (b) mass fraction inlet profiles across the nondimen-
sional transverse coordinate: hyperbolic Mach number (solid line), hyperbolic streamwise velocity
(dashed line), and self-similar solution (dotted line). Reference values are d,0 = 1.78 x 1073 m,
pret = 0.278 kg/m?3, Trer = 1250 K, and Uep = 1429 m/s.

be supplemented with the equation of state p7° = w0 = [1 + (wy 1 l)Y] _1, and with the expressions

L+ [y — 1)y

T, D=T""" , and ¢, = [1 + (wy;' — 1)Y]|T"2, (6)
1+ (0, 2~ 1)y g ?

IEL:

to account for the variation of the transport coefficients and specific heat with temperature and compo-
sition. The representative values o1 = 0.7 and o9 = 0.2 are used for the temperature power laws [15].
An example of how different inlet conditions affect the mixing-layer profile, with the conditions of the
experiment of Cheng et al. [12], is shown in Fig. 2. When imposing the velocity profile, the Mach num-
ber is not a monotonic function and attains subsonic conditions at an intermediate position. This effect
is of pivotal importance because downstream pressure disturbances can reach the inlet plane through
the subsonic region. In addition, if an oblique shock is considered to promote the ignition (as occurs in
scramjet engines), the penetration length into the mixing layer would be shortened and the post-shock
flow correspondingly affected. Further differences are expected to occur for higher Mach numbers,
where the heating associated with viscous dissipation, see last term in (4), could be sufficiently intense
to promote the appearance of a local maximum inside the mixing layer [16], thereby placing the ignition
kernel far inside from the hot upper stream.

2 Direct Numerical Simulations

Direct numerical simulations (DNS) for the evolution of the reactive mixing layer with different inlet
boundary conditions are offered in Fig. 3. It is shown three instantaneous temperature fields associated
with the three conditions employed in Fig. 2, which share the same flow properties outside the mixing
layer. The numerical simulations have been carried out with CREAMS [17], a compressible reactive
Navier—Stokes solver that uses a spatial seventh-order WENO scheme and a third-order total variation
diminishing Runge—Kutta temporal scheme. The value of the initial vorticity thickness, d,,0 = 1.78 x
103 m, is calculated from the inlet Reynolds number Rey,0 = 3200 and the average and convective
flow properties are provided from experimental data [12]. By direct inspection of Fig. 3, it is evident that,
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Figure 3: Instantaneous temperature and hear release fields corresponding to three initial profiles: hyper-
bolic Mach number (top), hyperbolic streamwise velocity (middle), and self-similar solution (bottom).
Dimensionless spatial coordinates scale with 8,0 = 1.78 x 1073 m.

under the specified conditions, the turbulent structures vary greatly based on the mixing layer profile.
However, the self-ignition distance, measured at the point of maximum reaction rate, is roughly located
at a distance of 3 mm from the inlet conditions and remains practically unchanged. The main causes
for this outcome are attributed to three factors: (1) the temperature profile does not exhibit significant
variations based on the selection of inlet conditions, (2) the air stream is very hot and dominates the
thermal runway, and (3) ignition occurs prior to the formation of turbulent structures. This outcome
should be analyzed further by considering higher Mach numbers and larger convective Mach numbers,
where temperature within the mixing layer may display greater sensitivity to the inlet conditions.
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