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1 Introduction 

With the development of aerospace propulsion technology, propulsion system based on detonation is 

expected to improve the propulsion efficiency due to its high thermodynamic efficiency[1,2] and 

inherent pressure-gain property[3]. Over the past decade, various attempts have been made to design 

new propulsion systems based on detonation, such as Pulsed Detonation Engine (PDE)[4], Oblique 

Detonation Engine (ODE)[5] and Rotating Detonation Engine (RDE)[6,7]. Among them, RDE is 

promising for the future aerospace propulsion system, because it is suitable for a wide work range 

compared to ODE and can provide stable thrust compared to PDE[8]. Due to the intrinsic characteristics, 

RDE has different types of combustion modes attributed to the variable operating condition, which 

presents a challenge for building a digital surrogate model of the engine.  

It is necessary for the engineering application of RDE to identify the engine operating mode. In the 

existing studies, the identification of the modes relies on the data measured by several sensors arranged 

circumferentially around the combustor[8,9]. It is a time-consuming task of relying on these data for 

manual modal discrimination, while an infinite variety of working conditions can be obtained 

theoretically by varying the combustor parameters and inlet conditions. Inspired by the development of 

deep semi-supervised learning methods[10], which can accomplish classification with only a small 

amount of labeled data, this paper presents a method that uses a small amount of data to identify the 

operating modes in Rotating Detonation Chamber (RDC). 

Moreover, sparse scattered observation data can be used to reconstruct high-resolution flow field in RDE 

combustor. Inspired by the great success of machine learning in fluid mechanics[11,12], we propose a 

Physics-Informed Neural Network (PINN)[13] that incorporates both deep learning methods and 

physical knowledge. With the observed data, this network aims to reconstruct high-resolution observed 

physical fields as well as extrapolate unobserved physical fields based on a simplified model of rotating 

detonation combustor[14]. The designed PINN can reconstruct high-resolution flow field in RDE 

combustor using sparse scattered observation points. 

This paper is arranged as follows. Section 2 introduces the detailed method of multi-mode recognition. 

Section 3 includes the PINN and reconstruction results. Finally, Section 4 concludes this work. Since 

the experiment of RDE is expensive and difficult to obtain detailed data to evaluate the results, in this 

work, we use numerical methods to obtain train and test datasets. 
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2 Multi-mode Recognition  

In this work, we use Convolutional Neural Network (CNN) to deal with mode recognition from scattered 

observation points. The mode recognition architecture is shown in Figure 1. The network structure based 

on Resnet-18[15] has one input convolutional layer, eight residual blocks (each residual block has two 

convolutional layers) and one fully connected layer. Convolution kernel size and number of channels 

are shown in the middle part of Figure 1. Limited by the amount of labeled data, we use semi-supervised 

learning method to train the model. The semi-supervised learning method used in this paper is 

MixMatch[16].  

 

Figure 1: Architecture of mode recognition model 

The implementation for the proposed model is performed using PyTorch, which is an open-source deep 

learning framework in Python. The loss function presented is optimized using Adam optimizer[17] and 

the learning rate is set to 5E-3. The batch-size is set to 36 and 50 epochs in total. Figure 2 shows the test 

confusion matrix, the predicted results match well with the ground truth with the accuracy 99.98%. If 

the training is performed through supervised learning with only a small amount of labeled data, the 

prediction accuracy is only 90.37%. 

 

Figure 2: Confusion matrix of mode recognition model trained with (left) and without (right) semi-

supervised learning method 

3 Multi-mode Flow-field Recognition 

In this paper, we use the lumped-volume combustor model developed by Koch and Kutz[14]. The 
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nondimensional one-dimensional govering equation shown as below. 
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Where H denotes the injection model function describing the variation of flow rate with combustion 

chamber pressure, H is the Heaviside step function, whose expression is: 
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There are 4 physical variables in equation set (1): density(ρ), velocity(u), pressure(p) and chemical 

reaction progress(λ). However, λ cannot be measured directly and only p, u, T are able to be observed 

by sensors fixed in the specified points with limited sampling frequency. Thus, the flow field 

reconstruction in RDE combustor is a typical inverse problem, which indicates the problem to 

reconstruct continuously, fully-dimensional data with dispersed, partial-dimensional observations and 

cannot be solved by traditional CFD methods. To improve the identification performance of PINN in 

different modes, we use meta-learning algorithm that allows the model to integrate knowledge from 

different working modes to improve the generalization performance of the PINN model. As shown in 

Figure 3, the outer optimization of meta-learning improves the performance of the model for multiple 

modes. Finally, the present PINN model is obtained that can be quickly adapted to new working modes. 

(1) 

(2) 

(3) 
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Figure 3: The structure of meta-PINN model 

The reconstruction results of single wave mode and counter two-wave mode are presented in Figure 4. 

The PINN prediction well fits the abrupt changes in flow variables caused by the propagation of the 

detonation wave in the flow field. It also captures the different distribution patterns of flow 

characteristics before and after the wave, such as the density jump before the detonation wave compare 

to sharp drop and slow rebound after the detonation wave. Furthermore, the meta-learning model 

converges about 10 times faster than the model with random initialization, which significantly saves 

computational resources. 

 

(a): Single wave mode PINN prediction (top) and ground truth (bottom) 
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(b): Counter two-wave mode PINN prediction (top) and ground truth (bottom) 

Figure 4: Reconstruction results of two typical modes (from left to right is ρ, u, p, λ) 

4 Conclusion and Future Work 

This paper presents a data-driven method for solving multi-mode recognition and flow-field 

reconstruction of RDC. The main research conclusion is summarized as follows. 

- The present mode recognition network can achieve the mode classification based on scattered 

pressure signals. Meanwhile, the model is trained with semi-supervised learning method to achieve 

better prediction accuracy with small amounts of labeled data. 

- The PINN is developed to reconstruct the high-resolution flow field in the RDE combustor using 

sparse scattered observation points. Due to the use of meta-learning methods, one PINN model can 

be adapted to different working modes. 

In future work, we would like to apply attention mechanism to capture the critical structure of detonation 

wave and improve the interpretability of the mode recognition network. Besides, we can combine PINN 

with real experimental data to realize the real surrogate model. 
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