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1 Introduction

The flow patterns generated by an inert shock reflected from a rigid boundary have been extensively
studied, and can consist of regular, Mach and von Neumann structures [1]. Similarly, a number of stud-
ies have been conducted on reflection patterns for gaseous detonations [2,3]. Significantly less is known
about the reflection of detonations in condensed-phase explosives at a confining surface. In a recent
study, Bdzil and Short [4] examined the flow structures that can develop when a small-resolved heat
release (SRHR) condensed-phase detonation wave obliquely impacts a rigid wall at small incident an-
gles. In simulations of condensed-phase detonation propagation in a confined two-dimensional circular
arc geometry, Short et al. [5] have shown that a series of regular or Mach reflection structures can result
as a consequence of the detonation impacting the outer surface of the arc. One feature that detonations
in both gaseous and condensed-phase explosives have in common is that the energy release associated
with a finite reaction rate has the ability to turn flow streamlines. In turn, this can affect significantly the
flow structures determining the detonation wave reflection patterns.

Two models are commonly used to describe detonation propagation in condensed-phase explosives.
Since the scale of the reaction zone is often significantly less than the characteristic geometry scale,
one model assumes that the energy release associated with reaction is instantaneous, so that the “shock”
jump incorporates the reaction energy release. This is commonly known as the Chapman-Jouguet (CJ)
detonation model. The second assumes that the reaction zone is fully distributed spatially. In reality,
detonations in many carbon-rich explosives consist a region of very rapid reaction, followed by region
of significantly slower reaction [4], and so incorporate features of both models in their dynamic flow
behavior. In the following work, we examine the flow reflection patterns and streamline turning ability
of a detonation traveling at the CJ speed impacting a rigid wall wherein a certain specified amount of
the energy due to reaction is released instantaneously, with the remaining released over a finite length
scale. At its two limits, we recover both the CJ detonation and fully distributed reaction models.

2 Model

We model the flow in the explosive with the compressible Euler equations,

Dρ

Dt
+ ρ∇ · u = 0,

Du

Dt
= −1

ρ
∇p, De

Dt
=

p

ρ2
Dρ

Dt
, (1)
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Figure 1: (Left) Schematic of a detonation traveling with Dn = DCJ impacting obliquely on a rigid
wall at an angle ω. At t = 0, the detonation is traveling relative to the wall the wall at speedDCJ/ sinω.
(Right) The shock-fit frame used for the computations.

for density ρ, pressure p, particle velocity u = (u, v) and specific internal energy e. The material
derivative is given by D/Dt = ∂/∂t+u ·∇, where t is time. We employ an idealized condensed-phase
detonation model [5, 6], wherein the equation of state (EOS) model for the internal energy, e, and the
frozen sound speed, c, are given by

e =
p+A

(γ − 1)ρ
− q, c =

[
γp+A

ρ

]1/2
, (2)

respectively, where γ is the adiabatic exponent and A is the stiffened gas constant. Reaction occurs
through a sequential two-stage process, where the specific reaction enthalpy q is given by

q = q1λ1 + q2λ2, (3)

where λ1 and λ2 are the reaction progress variables for the first and second reaction stages, respectively,
with 0 ≤ λ1,2 ≤ 1. For this model, the rate of the first reaction stage is assumed to be instantaneous,
while that associated with the second stage is given by

Dλ2
Dt

= kpn(1− λ2)ν , (4)

where k is a rate constant, n is the pressure exponent and ν is a reaction order variable. From the steady
flow relations associated with (1), we obtain the following relation between the reaction enthalpy and
the CJ speed:

q1 + q2 =
D2
CJ

2(γ2 − 1)

(
1− A

ρ0D2
CJ

)2

, (5)

where ρ0 is the initial density of the HE and DCJ is the CJ speed.

We now define ε ∈ [0, 1] as the fraction of the overall specific reaction enthalpy contribution due to the
second-stage reaction, so that

q2
q1 + q2

= ε, q1 =
D2
CJ

2(γ2 − 1)

(
1− A

ρ0D2
CJ

)2

(1− ε), q2 =
εD2

CJ

2(γ2 − 1)

(
1− A

ρ0D2
CJ

)2

. (6)

When ε = 0, then q2 = 0 and we recover the detonation model consisting of an instantaneous reaction.
When ε = 1, then q1 = 0 and we recover the detonation model consisting of a detonation shock and
fully spatially-distributed reaction zone. Reference scales are given in [5], where now the reference
length scale is the length in the steady, planar Chapman-Jouguet detonation wave where λ2 = 0.5. We
take

ρ0 = 2, A = 12.8, DCJ = 8, γ = 3, n = 1, ν = 1/2, (7)
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as with previous studies [5, 6], for which q1 + q2 = 3.24. The rate constant k is determined by setting
the above reference length scale.

For any given detonation speed normal to the front, Dn, we can define the jump conditions behind the
first instantaneous reaction stage as,

ρ = (γ + 1)ρ0

[
γ +

A

ρ0D2
CJ

(
D2
CJ

D2
n

)
− ξ
]−1

, uln =
Dn

γ + 1

[
1 + ξ − A

ρ0D2
CJ

(
D2
CJ

D2
n

)]
,

p =
ρ0D

2
n

γ + 1

[
1 + ξ − A

ρ0D2
CJ

(
D2
CJ

D2
n

)]
,

(8)

where

ξ =

[
1−

D2
CJ

D2
n

[
1− A2

ρ20D
4
CJ

(
D2
CJ

D2
n

− 1

)
− ε
(
1− A

ρ0D2
CJ

)2
]]1/2

. (9)

The total energy E = e+ (uln)
2/2 at the jump is calculated from

E =
p+A

ρ(γ − 1)
− q1 +

1

2
(uln)

2. (10)

For ε = 0 and Dn = DCJ , we recover the flow state for a CJ detonation model, while for ε = 1, we
recover the conditions for the jump across an inert shock with normal speed Dn. For Dn = DCJ and
ε ∈ [0, 1],

ρ = (γ + 1)ρ0

[
γ +

A

ρ0D2
CJ

− ξ
]−1

, uln =
Dn

γ + 1

[
1 + ξ − A

ρ0D2
CJ

]
, (11)

p =
ρ0D

2
n

γ + 1

[
1 + ξ − A

ρ0D2
CJ

]
, ξ =

√
ε

(
1− A

ρ0D2
CJ

)
. (12)

3 Polar Analysis

The problem under consideration consists of a detonation traveling withDn = DCJ obliquely impacting
a rigid wall at an angle ω (Fig. 1) as described in [4]. We can examine how the degree of energy release
at the shock due to instantaneous reaction affects the streamline turning angle θ of the flow as a function
of of ω, via a shock polar analysis. This is shown schematically in Fig. 2. The flow streamline turning
angle θ follows from (8), with

ul = uln sinω, vl = uln cosω, tan θ =
vl

Dn/ sinω − ul
, (13)

where ul and vl are the axial and transverse flow components, respectively (Fig. 2). Figure 2(Right)
shows θ as a function of ω for a range of ε ∈ [0, 1] and with Dn = DCJ . With no instantaneous energy
release (ε = 1), the incoming streamlines are turned through a moderately large angle. As ε decreases
and more energy is released due to instantaneous reaction, θ correspondingly decreases at any fixed ω.
Consequently, increasing instantaneous energy release at the shock has the ability to progressively turn
the flow back toward the incoming streamlines. For 0 < ω < π/2 and ε = 0, where all the energy is
released instantaneously, θ > 0, and thus the flow is always turned anticlockwise relative the incoming
streamlines. Figure 2 also shows that for a wide range of ω, the flow is supersonic behind the jump. In
the case of the CJ detonation (ε = 1) the flow behind the wave is always supersonic for ω < π/2.
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Figure 2: (Left) Schematic of shock polar construction for the streamline turning angle θ behind by an
oblique wave traveling at Dn = DCJ with an energy release due to instantaneous reaction defined by
ε ∈ [0, 1]. (Right) Streamline turning angle θ as a function of ω for a range of ε ∈ [0, 1]. Circles show the
value of ω (ωs) for which sonic flow occurs for each ε shown. Values of ω smaller than ωs correspond
to supersonic flow.

4 Numerical Computation - Shock Attached Frame

The flow equations (1) are mapped to a shock-fit frame drawn schematically in Fig. 1. The standard
integration methodology follows that in [7], and typically involves needing to calculate the shock accel-
eration ∂Dn/∂τ , where τ is the transformed time variable. Then,

∂Dn

∂τ
=

(
∂(|J |sρE)

∂τ
− ρE∂|J |s

∂τ

) / (
|J |s

∂(ρE)

∂Dn

)
, (14)

where |J |s is the determinant of the transformation Jacobian evaluated at the front. However, for a CJ
detonation model (Dn = DCJ , ε = 0), the ∂(ρE)/∂Dn term is singular at the sonic CJ point. Thus we
make the transformation

α = ξ +
Dn

DCJ
,

∂α

∂τ
=

(
∂(|J |sρE)

∂τ
− ρE∂|J |s

∂τ

) / (
|J |s

∂(ρE)

∂α

)
, (15)

where
∂

∂α
(ρE) =

1

γ − 1

∂p

∂α
− q1

∂ρ

∂α
+

1

2
(uln)

2 ∂ρ

∂α
+ ρuln

∂uln
∂α

, (16)

and
∂ρ

∂α
=

ρ2

(γ + 1)ρ0

[
1 +

(
2

(
A

ρ0D2
CJ

)
D3
CJ

D3
n

− 1

)
1

DCJ

∂Dn

∂α

]
, (17)

with[
α− Dn

DCJ
+
D3
CJ

D3
n

[
1− A2

ρ20D
4
CJ

(
2
D2
CJ

D2
n

− 1

)
− ε
(
1− A

ρ0D2
CJ

)2
]]

1

DCJ

∂Dn

∂α
= α− Dn

DCJ
,

(18)
and

∂uln
∂α

=
ρ0Dn

ρ2
∂ρ

∂α
+

(
1− ρ0

ρ

)
∂Dn

∂α
,

∂p

∂α
= ρ0u

l
n

∂Dn

∂α
+ ρ0Dn

∂uln
∂α

. (19)

Thereafter the flow equations are integrated with the finite volume method described in [7].
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Figure 3: Pressure field wave reflection patterns for a fully instantaneous reaction zone model (ε = 0)
with φ = 0.15 (left), φ = 0.35 (middle) and φ = 0.9 (right).

5 Regular and Mach Reflection Patterns for Partially Distributed Reaction Zones

We now conduct simulations of the impact problem for the full two-stage reaction model as desribed in
§2. Figure 3 shows the wave reflection patterns for a fully instantaneous reaction zone model (ε = 0)
with impact angles φ = 0.15 (left), φ = 0.35 (middle) and φ = 0.9, where φ = π/2− ω, i.e. the initial
angle of impact relative to the wall normal. Thus small φ corresponds to a glancing impact problem.
Figure 4 shows the corresponding wave reflection patterns for a fully distributed reaction zone model
(ε = 1) with the same impact angles as Fig. 3.

For ε = 0, the more shallow angles φ = 0.15 and φ = 0.35 exhibit a Mach reflection pattern, in
which the reflected shock attaches to the instantaneous detonation front. For the larger angle φ = 0.9, a
reflected shock wave is required to turn the flow to match the wall streamline. In contrast, the reflection
patterns for a fully distributed reaction zone (ε = 1) as shown in Fig. 4 are substantially different from
those observed in Fig. 3 for the same impact angles. For φ = 0.15, we observe a continuous reaction
zone structure with no discontinuous reflected wave present. The flow downstream of the reaction zone
also remains smooth. This indicates that exothermic energy release in a spatially distributed reaction
zone has the ability to turn the flow streamlines to satisfy the boundary conditions established by the
rigid wall. For φ = 0.35, we again observe a continuous reaction zone structure, with no discontinuous
reflected wave present. However, downstream of the reaction zone, compression waves steepen into a
reflected shock. A forked shock structure is observed near the end of the reaction zone. For the larger
angle φ = 0.9, we now observe that the reflected shock has penetrated through the reaction zone and
now forms a classical Mach stem structure.

In summary, exothermic energy release in a spatially distributed reaction zone plays an important role in
flow streamline dynamics, and significantly affects the wave reflection patterns generated by a detonation
reflected off a rigid wall. In the final paper, we will also examine the wave reflection patterns generated
for ε ∈ (0, 1), i.e. for partial instantaneous energy release.
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Figure 4: Pressure field wave reflection patterns for a fully distributed reaction zone model (ε = 1) with
φ = 0.15 (left), φ = 0.35 (middle) and φ = 0.9 (right).
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