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1 Introduction

The need for rapid mitigation of climate change and aviation-related emissions has been the driving
force behind the development and deployment of alternative jet fuels (AJFs) [1]. Research efforts have
mainly focused on hydrocarbons (and their blends) derived from non-petroleum feedstocks, designed
to act as a direct replacement for conventional distillate jet fuels in existing engine/aircraft systems. A
key challenge associated with the current AJF approval process is the need for rigorous tests to ensure
the safe operability and performance of these fuels, often requiring large volumes of the novel fuel
candidates. Cetane number is one of the fuel properties that is important for characterizing AJFs due to
its practical relevance as an ignition quality measure. The cetane number of a fuel is typically determined
by comparing its combustion characteristics in a test engine with those of reference fuels (ASTM D613
[2]). However, this method requires a large volume of fuel on the order of 1 L. An alternative metric
is the derived cetane number (DCN), which is estimated based on a fuel’s ignition delay time (IDT)
measured in an ignition quality tester (ASTM D6890 [3]). Like the cetane number, DCN also serves as
an effective index for ignition quality, but has the advantage of a lower fuel volume requirement (around
100 mL) and relatively smaller reproducibility errors. Even with the reduced volume requirement, this
DCN measurement still poses a hindrance since it is only one among numerous other property tests that
are needed for approving AJFs.

Consequently, a variety of low-volume, low-cost prescreening techniques have been identified in order to
predict fuel properties and model their combustion behavior before entering the official AJF certification
process, as described in [4]. These techniques aim to develop correlations between fuel properties and
compositional information obtained from methods such as 2-D gas chromatography (GCxGC), nuclear
magnetic resonance (NMR), or Fourier transform infrared (FTIR) spectroscopy. Various studies over
the years have reported such correlations for estimating DCN. Ure and Dooley [5] developed numerical
methods based on NMR for predicting the derived cetane number (DCN) of hydrocarbons, while Yang
et al. [6] leveraged GCxGC data to predict the DCN and other critical properties of sustainable aviation
fuels using a Monte Carlo sampling technique. A few other studies proposed ways to correlate cetane
number with infrared spectral data. Cooper et al. [7] used near-infrared (NIR) spectral data (880–1570
nm) of liquid fuels to build partial least squares (PLS) models for predicting the cetane index, among
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other physical properties, of jet fuels. Wang et al. [8] proposed the vapor-phase infrared absorbance ratio
at two wavelengths (3.41 µm/3.39 µm) as a spectroscopic predictor for the DCN of hydrocarbon fuels.
More recently, Al Ibrahim and Farooq [9] used IR spectra to develop three methods for predicting the
DCN of diesel-like fuels: PLS, support vector machine (SVM), and artificial neural network (ANN).

However, the datasets used to train these models are usually restricted to neat hydrocarbons and con-
ventional jet fuels, thus limiting their applicability to novel AJF candidates. Our recent work [10] at
Stanford proposed the use of elastic-net regularized linear models based on FTIR spectral data over
an extended wavelength range of 2-15.38 µm (henceforth referred to as the 2-15 µm region) for the
prediction of three combustion properties (derived cetane number, ignition delay time, and net heat of
combustion). The training dataset used in this previous work included the vapor-phase FTIR spectra and
property data of approved AJFs along with those of conventional jet fuels and neat hydrocarbons, and
were shown to achieve high prediction accuracy on test fuel blends comprised of AJFs. Although the
performance of this linear model for DCN was satisfactory, it underperformed relative to the other prop-
erties that were studied, indicating that the spectrum-DCN relationship could be better captured using
nonlinear regression methods. Support vector regression (SVR) is one such method that offers the capa-
bility to effectively model nonlinear property correlations, without being as computationally expensive
as more complex methods such as artificial neural networks (ANN). SVR is also less prone to overfitting
than ANN when the training dataset has less samples than features (as is the case with FTIR spectra).
Despite having reduced interpretability compared to linear models, SVR has the potential to predict key
properties such as DCN with much higher accuracy. In the present work, we develop a nonlinear support
vector regression model for predicting DCN based on extended-wavelength FTIR spectra, and compare
its performance with our previously developed elastic-net regularized linear model [10] on a wide range
of hydrocarbon fuels, including AJFs.

2 Methodology

2.1 Training Dataset of FTIR Spectra and DCN Values

The training dataset used in the development of the current models contains the vapor-phase FTIR
spectra of 149 fuels in the 2-15 µm wavelength range, spanning carbon numbers from 5 to 16. Out of
these, the spectra of 34 neat hydrocarbons (n-, iso-, cyclo-paraffins, and aromatics) were sourced from
the Pacific Northwest National Laboratory (PNNL) spectral database [11], while the spectra of 13 neat
hydrocarbons, 8 conventional jet fuels (Jet A) and 9 approved AJFs (C fuels) were measured at Stanford
University using a Nicolet 6700 FTIR spectrometer (details of the measurement procedure can be found
in [12]). The spectra of 85 blends of neat hydrocarbons were calculated as the mole fraction-weighted
sums of the individual components’ spectra.

The dataset also contains DCN values compiled from various literature and online sources. To maintain
consistency, all the DCN values used in the dataset were taken from experimental measurements adher-
ing to ASTM D6890 [3]. The DCN data for neat hydrocarbons and jet fuels were sourced from Yanowitz
et al. [13] and Wang et al. [8,14], respectively. The DCN values of the blends of neat hydrocarbons were
sourced from [8, 15].

2.2 Model Development

The FTIR spectra in the 2-15 µm wavelength range contain more than 18,000 wavelengths, while the
total number of fuels in the current training dataset is only 149. Such high dimensionality in the training
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dataset usually leads to poor performance of machine learning models. In order to circumvent the prob-
lem of high dimensionality, the FTIR spectra are first pre-processed by performing principal component
analysis (PCA). The FTIR data are linearly transformed into a set of orthogonal principal components
(PCs), such that the first PC captures the greatest variance in the original dataset, followed by the second
PC, and so on. This enables the selection of a subset of PCs as predictors for training regression mod-
els, thereby greatly reducing the dimensionality without significant loss of information. The number of
principal components to select, NPC , is treated as a hyperparameter that can be optimized using cross-
validation. SVR in itself is a linear regression method. However, SVR can be employed for nonlinear
regression when used in conjunction with a kernel function that maps the original input data to a higher-
dimensional feature space, where the problem is linear. In the present work, the selected set of PCs is
similarly mapped to a high-dimensional space using a radial basis function (RBF) kernel, parameterized
by σ. Other kernel functions such as linear and polynomial were found to underperform compared to
RBF on the current dataset. An SVR model is then trained on the transformed features to obtain the
best-fit hyperplane for predicting the property of interest. The SVR algorithm has an additional tun-
able cost parameter C, which controls the penalty on outlier data points. Further details about the SVR
approach can be found in [16, 17].

Figure 1: Left: Percentage of variance explained by each of the first 10 principal components. Right:
Cross-validated grid search for selecting the optimal values of the model parameters C and σ (indicated
by the dashed white lines).

To achieve optimal performance, the best combination of parameters NPC , C, and σ needs to be identi-
fied. This is done by performing a 10-fold cross-validated grid search. By experimenting with different
values of these three parameters, the model selects the combination that results in the minimum cross-
validation error (CVE). Following this process, only the first ten PCs are chosen to build the SVR model
for DCN. As seen in the left panel of Fig. 1, the first 10 PCs are able to cumulatively capture close to
99% of the total variance in the FTIR dataset. Thus, discarding the subsequent PCs causes virtually no
loss of spectral information. The right panel of Fig. 1 demonstrates the model tuning process over a
grid of C and σ values, with NPC fixed at its optimal value of 10. The dashed white lines correspond to
the combination of C and σ that has the lowest CVE. Therefore, the optimal parameters describing the
SVR model for DCN are: NPC = 10, C = 38.05, and σ = 0.088.

3 Results and Discussion

The optimal hyperparameters obtained using the procedure described in Section 2.2 were used to gen-
erate the SVR model for DCN. The performance of this optimized model was evaluated on the training
dataset using three performance metrics – cross-validation error (CVE, an estimate of future prediction
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error), coefficient of determination (R2, a measure of goodness-of-fit), and root-mean-squared error
(RMSE) of prediction. The results from the current SVR model are also compared with the previously
developed elastic-net regularized linear model [10] to highlight the improvement in predictive perfor-
mance due to the use of nonlinear regression. Figure 2 shows the performance of the previous (linear)
and current (nonlinear) models on the training dataset for DCN. Figs. 2a and 2b show the predicted
versus actual DCN and the corresponding residuals obtained using the linear model, while Figs. 2c and
2d show the predicted versus actual DCN and residuals using the nonlinear model. The CVE, R2, and
RMSE for these models are also listed in the figure headings.

Figure 2: DCN model performance on training data: (a) Predicted DCN and (b) residuals using the
previously developed elastic-net regularized linear model [10]; (c) Predicted DCN and (d) residuals
using the current SVR model.

The nonlinear model for DCN shows distinctively improved predictive performance compared to the
linear model, as evidenced by the reduction in CVE and RMSE, and the increase in R2. Although the
CVE of the SVR model is only 5% lower than the linear model, there is a factor of 2 reduction in the
RMSE achieved. Additionally, the higher R2 value for the current model indicates a stronger correlation
between FTIR spectra and DCN. Direct comparison of these models with alternative models proposed
in the literature is not straightforward, mainly because of the differences in the training data and the
reported performance metrics. However, our SVR model for DCN (R2 = 0.976, CVE = 9.13%) has lower
percentage error than other PLS models based on IR spectra (R2 = 0.91, CVE = 14.03%), and achieves
superior performance compared to similar SVM-based models (R2 = 0.93, CVE = 10.73%) [9]. Since
the present model is aimed at streamlining the AJF approval process, comparing its prediction accuracy
with standard test methods is a crucial step in evaluating model performance. The reproducibility error
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of the ASTM D6890 test method is estimated to be equal to 0.06201(DCN − 13.7) [3]. The root-mean-
squared reproducibility error calculated using this formula on the current training dataset is found to be
2.13 or 4.70%, which is higher than the RMSE achieved by the SVR model for DCN (1.94 or 4.28%).
This indicates that the uncertainty associated with the experimental DCN values in the training dataset
is expected to impact the uncertainty in the predicted DCN values to a greater extent than the modeling
approach itself.

4 Conclusions

The vapor-phase FTIR spectra of jet fuel-relevant hydrocarbon fuels in the 2-15.38 µm wavelength
range were used to develop a nonlinear regression model for predicting derived cetane number. The
FTIR spectra were first pre-processed using principal component analysis (PCA), and a support vector
regression (SVR) model was trained on a subset of the principal components to reduce the dimension-
ality of the dataset. The optimal model parameters were chosen by performing a cross-validated grid
search. The results from this optimal SVR model were compared with the elatic-net regularized linear
model developed in our previous work at Stanford [10]. The present nonlinear model showed consid-
erable improvement in performance compared to the previous linear model, and in general, performed
better than other predictive methods proposed in the literature. The prediction error achieved by the SVR
model was also found to be lower than the reproducibility error of the standard test method for estimating
DCN (ASTM D6890 [3]), highlighting the dominance of experimental uncertainty in the training data
over the prediction uncertainty associated with the modeling approach. Future work aims to implement
this support vector regression approach for modeling other important physical and chemical properties
of hydrocarbon-based, alternative fuels.
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