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1 Introduction

Detonations of particle-laden flows are of wide interest to the scientific community: in hypersonic
propulsion with liquid fuel droplets, dust explosions with solid reacting particles, or mitigation of risks
with water sprays over reactive gaseous mixtures. The underlying physics involve complicated transfer
processes of mass, momentum and energy between the carrier gas and the disperse phase (either liquid
or solid), that requires a detailed modeling.

First approaches comprised the response of shock waves in dusty gas flows when drag effects are present
in the two-phase coupling [1], but soon other effects, such as heat transfer, were incorporated to non-
reactive flows [2]. The particles traversing the shock wave are typically considered to remain unaffected
and preserve their speed and temperature prior to the shock. This approximation addresses the fact that
a relaxation region must appear in which drag forces decelerate the particles to the compressed flow
velocity and heat transfer rises their temperature to their thermal equilibrium with the carrier. In the
case of liquid particles or droplets traversing a shock, breakup processes can be avoided for sufficiently
small values of the Weber number [3], given very fine droplet sizes which will be considered here. Nev-
ertheless, the exchange of mass between phases must then be considered to account for the vaporization
processes [4, 5], which also alters the energy exchange. Finally, some other studies have incorporated
the reactive nature of detonations either for particles [6] or droplets [7, 8].

However, a systematic study on the characteristic length scales that appear in the physical problem
related to the accommodation, heating and vaporization times [9], and their competition with the typical
induction length of detonations is yet to be offered. For this purpose, the present work considers a
multi-continua formulation, given that mono-disperse particles can be distributed closely together, with
inter-particle distances ℓd much smaller than the macroscopic length-scale of the problem L, but still
much larger than the particle radius a [10]. This limit enables an Eulerian formulation of the disperse
phase, which acts as an ideal continuous media when disregarding inter-particle interactions.

2 Formulation

We shall first consider a shock passage over particle-laden mixtures in a 1-D steady-state approximation.
The disperse phase is formed by a dilute monodisperse distribution of fuel droplets, as sketched in Fig.1,
such that its volume fraction is ϕd = (4π3 a3)/(ℓ3d −

4π
3 a3) ≪ 1, where subscript d is used hereafter for
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Figure 1: One-dimensional detonation internal structure for a monodisperse fuel spray. Physical scales
involved in the accommodation (ℓa), heating (ℓh), evaporating (ℓv) and reactive (ℓi) processes.

droplet variables. The former allows to define the particle number density, n = ℓ−3
d . Therefore, as

the disperse-phase (liquid or solid) density is much larger than the gaseous phase ρd/ρ ∼ O(103), the
liquid-to-gas mass-loading ratio can be defined as

α =

4π

3
a3ρd

ℓ3dρ
=

mdn

ρ
, (1)

and takes values of order unity when (a/ℓd)
3 ∼ ρ/ρd. For this reason, a two-continua formulation for

the gaseous and solid or liquid phases can be used for characteristic lengths L ≫ ℓd ≫ a, where the
macroscopic scale encloses numerous particles that are sufficiently separated from each other.

Regarding the two-way coupling between phases, drag-force modeling fx must be provided first. Stokes
flow may be used for a velocity difference between the gas and liquid phase (u−ud), if the particle-based
Reynolds number is small Red ≪ 1, be fx = 6πµa(u− ud). Nevertheless, for large Reynolds numbers
Red ≫ 1 the drag expression fx = ρCDa

2(u − ud)
2 can be applied without qualitative changes in the

character of the results. Each drag model involves an adaptation time ta ∼ mdu0/fx. In particular,
for Stokes flow (Red ≪ 1) around the particles, ta = md/(6πµa) = (2ρda

2)/(9ρ0ν0), defines the
accommodation length ℓa = uota.

Additionally, a source term of mass vaporization rate ṁd must be included to describe the varying radius
of droplets a. Specifically, the Eulerian individual droplet mass change reads

d
(
4π
3 ρda

3
)

dt
=

4π

3
ρdud

da3

dx
= −ṁd = −4πa

k

cp
λ, (2)

where

λ =
1

Lev
log

(
1− Yv
1− Yv,s

)
(3)

is the dimensionless vaporization rate for a local mass fraction of vapour Yv and a particularized amount
on the droplet surface Yv,s, which is provided by the Clausius-Clapeyron relation, namely,

Yv,s =
Wv

Ws
exp

(
Lv

RTB
− Lv

RTd

)
, (4)
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with Lev standing for the Lewis number of the vapour, TB the boiling temperature, Lv the latent heat
of vaporization, Wv the molecular mass of the vapor fuel and Ws = (Yv,s/Wv + YO,s/WO)

−1 the
molecular mass of the mixture at the droplet surface. Hereafter, a new time scale must be introduced,
controlled by the vaporization rate model, which scales as tv ∼ a2ρd/(3ρDT ), such that ta/tv =
2/(3Pr).

Finally, the heat transferred from the gas phase q̇g = 4πka(T − Td)Nu = Lvṁd + q̇d includes the
additional phase-change energy transfer and heating rate for each droplet, which is then expressed as

q̇d = 4πka

(
T − Td

eλ − 1
− Lv

cp

)
λ, (5)

with λ/(eλ − 1) corresponding to the Nusselt number of a evaporating sphere, Stefan flow considered,
and k the conductivity of the mixture.

The gas phase conservation equations for steady one-dimensional flows along the x direction read,

d

dx
(ρu) = nṁd, (6)

d

dx
(ρu2) = −dp

dx
+ nṁdud − nfx, (7)

d

dx
(ρucpT ) = u

dp

dx
− nfx(ud − u) +−n [ṁd(Lv − cpTd) + q̇d] +Qω̇, (8)

d

dx
(ρuYv) = nṁd − ω̇, (9)

d

dx
(ρuYO) = −sω̇ (10)

p = ρRT, (11)

for continuity, momentum, enthalpy, fuel vapor species Yv, oxidizer species YO and equation of state
respectively. Specifically, R is the universal gas constant, Q is the heat release per unit mass of fuel
consumed and s the amount of oxidizer consumed per unit mass of fuel. The reaction rate ω̇ is described
with a 1-step irreversible global Arrhenius model,

ω̇ = BρYvYO exp

(
− Ea

RT

)
, (12)

where B is the pre-exponential factor, and Ea the activation energy.

The disperse liquid-phase equations are

4π

3
ρdud

da3

dx
= −ṁd = −4πa

k

cp
λ, (13)

4π

3
ρda

3ud
dud
dx

= fx = 6πµa(u− ud), (14)

4π

3
ρda

3udc
dTd

dx
= q̇d = 4πka

(
T − Td

eλ − 1
− Lv

cp

)
λ, (15)

d

dx
(nud) = 0 (16)

use made of the direct transformation of d/dt = ∂/∂t + ud∂/∂x from a Lagrangian evolution into an
Eulerian formulation.
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The integration of the system of equations requires boundary conditions at x = 0 corresponding to
post-shock properties (Neumann conditions noted with the subscript o), ρ− ρo = u− uo = T − To =
n−no = up−u1 = Tp−T1 = 0. Post-shock conditions can be expressed as functions of the incoming
Mach number M1 = u1/

√
γRT1 (with specific heats ratio γ = cp/cv) through the well-known Rankine-

Hugoniot relations for velocity uo/u1 = ρ1/ρo = fu(M1, γ), pressure po/p1 = fp(M1, γ), temperature
To/T1 = fT (M1, γ), or the resulting Mach number Mo = fM (M1, γ).

3 Scales of the reactive problem

On one hand, the main length scale of the reactive flow dynamics is given by the induction length ℓi,
which will be used together with the post-shock gas speed uo to write the characteristic reactive-flow
time, tc = ℓi/uo. On the other hand, the aforementioned droplet acceleration time, use made of the
Stokes-flow approximation, is ta = 2ρda

2/(9ρν). Those two time scales introduce the dimensionless
Stokes number St = ta/tc, describing the inertia of the droplets relative to the reactive gas flow.

Dimensionless coordinates are then η = x/ℓi, and τ = t/(ℓi/uo). In addition, the dimensionless flow
variables are referred to post-shock values, namely ρ′ = ρ/ρo, u′ = u/uo, T ′ = T/To, p′ = p/(ρou

2
o),

Y ′
O = YO/YOo, a′ = a/ao, n′ = n/no, T ′

d = Td/To, u′d = ud/uo. Finally, some dimensionless
parameters appear, as q = Q/cpTo, S = s/YOo, T ′

B = TB/To and lv = Lv/(cpTo).

The two-way coupled set of equations can now be written in dimensionless form, for the gas phase,

d

dη
(ρu) =

2

3

αonaλ

PrSt
, (17)

d

dη
(ρu2 + p) =

αonaλ

St

(
2

3

udλ

Pr
− (u− ud)

)
, (18)

d

dη
(ρuT ) = (γ − 1)M2

o

[
u
dp

dη
+

αona

St
(u− ud)

2

]
− 2

3

αonaλ

PrSt

(
T − Td

eλ − 1
− Td

)
+ qΩ̇, (19)

d

dη
(ρuYv) =

2

3

αonaλ

PrSt
− Ω̇, (20)

d

dη
(ρuYO) = −SΩ̇, (21)

p =
ρT

γM2
o

, (22)

where the tildes have been dropped for convenience, and with Pr = ν/(k/ρcp) = 0.7, the mass-loading
ratio αo = (4/3)πa3ono(ρd/ρo) and the dimensionless reaction rate Ω̇ = βρYOoYOYv exp(β(1−1/T )),
where β = Ea/RTo is the Zeldovich number. It should be noted that the characteristic induction length
selected above is, thus, ℓi = β−1(uo/B)eβ . Secondly, for the liquid phase we have

ud
da2

dη
= −4

9

λ

PrSt
, (23)

a2ud
dud
dη

=
u− ud
St

, (24)

a2ud
dTd

dη
=

2

3

cp/cλ

PrSt

(
T − Td

eλ − 1
− lv

)
, (25)

d

dη
(nud) = 0. (26)
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Figure 2: Numerical results for variation of the mass-loading ratio (left) and the Stokes number (right).

4 Results

Characteristic values provided here for discussion include the latent heat of vaporization of methanol
Lv ≃ 1100kJ/kg, which will be used in the following. Its boiling temperature ranges from TB = 337K
at 1 bar to TB = 400K at 8 bar, the later being the pressure provided by normal shocks at M1 = 2.645
or Mo = 0.5, and the specific heat ratio is taken as c/cp = 2.5. Reactive parameters are fixed to
β = 10, q = 5 and S = 6 for convenience. Representative results of the integration are shown in Fig. 2
for progressive variation of the mass-loading ratio parameter αo and for variation of the inertia of the
droplets via the Stokes number. It should be noted that the relaxation zone remains practically unaf-
fected by the variation of the liquid mass in the disperse phase, while the final momentum and thermal
equilibrium value is strongly controlled by this parameter. However, droplet inertia through variation
of the Stokes number produces major changes in the competing lengths and the inner structure of the
relaxation-induction region with practically constant downstream equilibrium values for fixed Mach
number and mass-loading ratio. Different modifications of the competing lengths involved, be induc-
tion, accommodation, heating and vaporization, through Zeldovich, Stokes, Prandtl numbers and c/cp,
have shown in additional computations to provide different regimes of detonations, either overdriven,
Chapman-Jouguet or failure.

Finally, the formulation presented above is used to obtain the upstream Mach number that suffices to
provide sonic state (M = 1) in the post-shock flow, be the Chapman-Jouguet condition, for varying
values of the parameters presented above. Figure 3 shows the upstream Mach number providing CJ
detonation regime for fixed values of αo and St, together with the distance from the shock where sonic
conditions are achieved. It can be noted that increasing mass-loading ratio requires stronger shock
waves to provide the CJ regime, while differences in droplet inertia are mostly irrelevant when varying
the Stokes number. Finally, a maximum value of αo is found, for which the distance of sonic conditions
xCJ grows asymptotically. As a concluding remark, large amounts of liquid droplets of a prescribed fuel
can lead to failure due to the great thermal requirements of heating and vaporization processes that need
to be balanced with combustion heat release.
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Figure 3: Variation of Chapman-Jouguet Mach number (left) and distance (right) for variation of αo and
different values of the droplets Stokes number.

with UPM (CHAC-CM-UPM) and UC3M (H2SFE-CM-UC3M).
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