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1 Introduction 

The Euler equation is usually used to study the detonation performance. Euler equations contain mass 

conservation equation, energy conservation equation, momentum conservation equation and reaction 

rate equation. Excessive variables in the Euler equation make calculations and theoretical analysis more 

difficult. Majda model[1-3] simplifies the Euler equations. Majda model can capture many of the 

phenomena of the much more complicated reactive Euler and Navier-Stokes equations governing 

physical detonation and eliminate enough of technical complexities so as to be mathematically easy. 

The Majda model contain a Burgers equation and a chemical kinetics equation[4-5]: 
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Here, subscript denote differentiate with respect to x and t; u is a lumped scalar variable representing 

various aspects of density, pressure, and temperature; z is the mass fraction of reactant in a simple one-

step reaction scheme ,if no reaction occurred in front of shock wave, so z=1. When the reaction is over, 

z=0, f(u)is a nonlinear convex function; q, k, ε are positive constants measuring reaction rate, heat release, 

and viscosity, respectively. φ(u) is the ignition function which turns on the reaction. 

If set: 
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Where, the subscript “ig” means “ignition” . 

The Majda model become as follow: 
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Here, u can represent density, pressure, and temperature; zt simulates the reaction rate in the Euler system; 

θ simulate reaction activation energy. 

Above model is a Majda simplified model for studying the stability of ZND detonation in this paper. 

This model is simpler than Euler equation. In the model , the chemical reaction equation is an Arrhenius 

reaction and ignition equation is more general and realistic than previous work .  

2 Detonation stability theory for Majda model 

The leading shock wave is considered to be a shock wave front that superimposes the perturbation on a 

steady state. If the perturbation is attenuated for every frequency and wavelength, the detonation 

structure is stable. If there is any perturbation that increases with time, the detonation wave structure is 

considered unstable.  

According to the Stability criterion[6-9], we need to know the real part of the eigenvalues when the 

stability function Eq.(4) is equal to zero. If there is at least one eigenvalue’s real part is greater than zero, 

the detonation is unstable. If the real part of eigenvalues are all smaller than zero, the detonation is stable. 
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DZND(λ)is the stability function Evans-Lopatinski determinant , λ is eigenvalue. ( )
T

W u z= , 

( )
T

W u z=  is the steady solution. ( )( ) ( )( ), , ,u z x t u z x st= − , s is speed of shock wave.  

When ignition function ( )u is not simple enough (such as Heaviside function), it is very difficult to 

get the analytical expression of Z for Eq.(3), it is very difficult to solve Eq.(4)directly. Therefore, we 

use the winding number for stability analysis in this paper. 

Winding number[10] is a method for determining whether there is a zero in a certain area in the complex 

plane. According to the stability criterion, as long as the real part of eigenvalue is greater than zero, the 

detonation is unstable. So, we only need to find the eigenvalues λ that satisfy ( ) 0
ZND

D  =  in the 

complex plane where the real part is greater than zero( ( )Re 0  ). If there is an eigenvalue with 

Re 0  , the detonation is unstable.  

The number of roots indicates the number of eigenvalues which satisfies ( ) 0
ZND

D  =  in unstable 

region. We give the semicircle figure 1: 



Yuanxiang, SUN                                                      Stability Analysis of ZND Detonation for Majda’s Model 

29th ICDERS – July 23-28, 2023 – SNU Siheung 3 

 

Figure 1: The semicircle of radius R  

Substituting every λ on the boundary of semicircle  into Eq. (4), we will obtain a figure of ( )ZND
D  . 

We can determine the winding number from the figure of ( )ZND
D  . The winding number is the number 

roots of ( ) 0
ZND

D  = in the semicircular area of radius R. If the winding number is not zero, it means 

there are eigenvalues with ( )Re 0   in semicircular area of radius R. So detonation is unstable. If the 

winding number is zero in semicircular area of radius R, it means there is no eigenvalue with ( )Re 0  . 

So it is stable in semicircular area of radius R. 

3 Example of stability analysis for Majda’s Model 

The stability analysis of Eq.(3) by the winding number for different parameters is conducted. 

The first group parameters: 0.5, 1q k= = ,  = 1, 2, 4, 8, the results are following: 

  
Figure 2.1: θ=1, winding number is 0 Figure 2.2: θ=2, winding number is 0 
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Figure 2.3: θ=4, winding number is 2 Figure 2.4: θ=8, winding number is 4 

In the case of parameters 0.5, 1q k= = , when the simulated activation energy 1 2 = ， , the winding 

number is zero in semicircular area of radius R=10. Therefore, the detonation is stable in the selected 

area R=10. When the simulated activation energy 4 = , the winding number is 2 , when 8 =  , the 

winding number is 4; the detonation are unstable. 

The second group parameters: 0.3, 1q k= = ,  = 1, 2, 10, 12,  the result is as follow: 

  
Figure 3.1: θ=1, winding number is 0 Figure 3.2: θ=2, winding number is 0 

  
Figure 3.3: θ=10, winding number is 2 Figure 3.4: θ=12, winding number is 4 

When the simulated activation energy 1, 2 = , the winding number is 0 in semicircular area of radius 

R=10. Therefore, the detonation is stable in the selected area.  

When the simulated activation energy 10 = , the result of winding number is 2; when 12 = , the 

winding number is 4. Therefore, the detonation is unstable . 



Yuanxiang, SUN                                                      Stability Analysis of ZND Detonation for Majda’s Model 

29th ICDERS – July 23-28, 2023 – SNU Siheung 5 

From Fig. 2 and Fig.3, we can see: for smaller θ ,the detonation is stable, for larger θ ,the detonation 

tends to be unstable. The physical reason is that: low activation energy θ means low temperature 

sensitivity for reaction rate, which makes the detonation more stable. 
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