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1 Introduction 

Numerical simulation provides details in combustion processes and helps to reveal the physical-
chemical mechanisms involved therein. Therefore, numerical simulation becomes one of the most 
important research tools for developing alternative fuels and high-performance combustion engines. To 
achieve quantitative rather than qualitative prediction, detailed kinetic model needs to be considered in 
simulations. However, the broad range of temporal scales and large number of species involved in 
kinetic model bring great challenge for combustion simulation. The computational cost increases greatly 
with the size of the kinetic model. Therefore, there is an urgent need to develop a high-efficient surrogate 
model for chemical kinetic modeling to improve the computation efficiency. 

Artificial neural network has been widely known for its extraordinary ability to fit nonlinear, high-
dimensional data [1]. It has been applied successfully in the combustion area since the 1990s [2]. The 
trained neural networks predict the transient evolutions of the chemical source term such that direct 
integration can be replaced efficiently. However, reaction systems with both low-temperature and high-
temperature chemistry (LTC and HTC) bring new challenges to neural networks [3][4]. In a two-stage 
ignition process, the species concentration distribution has scale separation, and the characteristic 
timescales are divergent. In addition, the low-temperature ignition and cool flame rely on different 
radical chain branching pathways from the high-temperature chemistry cases, which is difficult for a 
traditional neural network to predict. Furthermore, only a few studies consider element conservation for 
the neural network-based model. The violation of the fundamental conservation law makes the method 
inaccurate and unstable. 

The objective of this work is to construct a robust neural network model which keeps the conservation 
law and can predict LTC and HTC by a single neural network. The isobaric homogeneous autoignition 
problem is considered here. Dimethyl ether (DME)/air mixture is chosen since it has two-stage ignition 
and the LTC and HTC of DME are both well-studied. A kinetic model DME consisting of 39 species 
and 175 elementary reactions [5] is used. Based on the method developed by Zhang et al. [4], the Box-
Cox Transformation is introduced to mitigate multi-scale effects in combustion. Data samples are 
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obtained by the manifold sampling method with a wide range of initial conditions, and a single neural 
network is trained offline. The accuracy of the neural network method is verified, and the computational 
efficiency of the neural network is explored. 

2 Data Sampling and Neural Network Methods 

The neural network aims to predict the average changing rate for each physical state at a large time step. 
The physical state of the gas mixture includes temperature 𝑇𝑇, pressure 𝑃𝑃 and species mass fraction 𝑌𝑌𝑖𝑖, 
which is a 41-dimensional vector denoted by 𝑋𝑋. The reaction system has the following form: 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑋𝑋) (1) 

In the study, we set a specific time step 𝛥𝛥𝛥𝛥. The neural network's task is to predict the time integration 
with a fixed time-step 𝛥𝛥𝛥𝛥. The procedure consists of the following four steps: 

Step I, Sampling. Under a specific time step 𝛥𝛥𝛥𝛥, samples in the form of (𝑋𝑋0,𝑋𝑋1) are obtained by direct 
numerical simulation (Cantera solver [6]), where 𝑋𝑋0 is the physical state at a certain moment, and 𝑋𝑋1 is 
the physical state evolved by 𝑋𝑋0 after a fixed time step 𝛥𝛥𝛥𝛥. The training data is assembled by simulating 
auto-ignitions at different initial conditions. In addition, the data is screened. Therefore, there are 
abundant samples with high heat release rates (𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻). 

 𝑝𝑝(𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛥𝛥𝑠𝑠𝑠𝑠) = � 𝑝𝑝1  𝐻𝐻𝐻𝐻𝐻𝐻 < 𝐻𝐻𝐻𝐻𝐻𝐻0
 𝑝𝑝2  𝐻𝐻𝐻𝐻𝐻𝐻 ≥ 𝐻𝐻𝐻𝐻𝐻𝐻0

  (2) 

In Eq. (2) , 𝑝𝑝1  and 𝑝𝑝2  are probabilities of selecting data whose 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  are below or above 𝐻𝐻𝐻𝐻𝐻𝐻0 , a 
threshold to distinguish low and high heat release rates. 

Step II, Data preprocessing. For the mass fraction of species 𝑌𝑌𝑖𝑖, Box-Cox Transformation (BCT) [7] is 
adopted. This transformation can mitigate the multi-scale effect of combustion data. The formula of 
BCT is [7]: 

 𝑓𝑓(𝑥𝑥) = �
 𝑠𝑠𝑙𝑙𝑔𝑔 𝑥𝑥 , 𝜆𝜆 = 0 

 𝑥𝑥
𝜆𝜆−1
𝜆𝜆

 ,   𝜆𝜆 ≠ 0
 (3) 

For all species, we set the parameter 𝜆𝜆 = 0.1. Denote 𝑋𝑋0� and 𝑋𝑋1� as the data transformed with BCT and 
with standard normalization. The neural network's output is 𝑋𝑋1� − 𝑋𝑋0�.  

Step III, Neural network training. The neural network has four hidden layers, and the numbers of neurons 
are 800, 1600, 800, and 400. The activation function is GELU [8], and the loss function is 𝐿𝐿1.  

Step IV, Inference. By using the transformation in step II and the neural network trained in step III, the 
neural network predicts the value of 𝑋𝑋1 from 𝑋𝑋0. The predicted values of 38 species except N2 are used, 
and the mass fraction of N2 is calculated from other species, the pressure 𝑃𝑃 equals the initial pressure 
(isobaric problem), and the temperature 𝑇𝑇 is calculated based on energy conservation. 

3 Results and Discussions 

3.1  The Result of Manifold Sampling 
The range of initial conditions selected in this study is as follows: initial temperature 𝑇𝑇 = 700 − 1200 𝐾𝐾, 
initial pressure 𝑃𝑃 = 5 − 20 𝑎𝑎𝛥𝛥𝑎𝑎, equivalence ratio 𝜑𝜑 = 0.8− 1.2. 8000 initial conditions are randomly 
generated, and Cantera is used for DNS and data sampling. A specific time step 𝛥𝛥𝛥𝛥 = 10−6 𝐻𝐻 is selected. 
The parameters of the sampling probability function are 𝑝𝑝1 = 0.01, 𝑝𝑝2 = 0.3 and 𝐻𝐻𝐻𝐻𝐻𝐻0 = 108  𝐽𝐽/(𝑘𝑘𝑔𝑔 ⋅
𝐻𝐻). About two million data points are selected with 10% for the test set and the other 90% for the training 
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set. 

Figure 1 is the phase diagram for the sampled data. The x-axis is the magnitude of each physical quantity, 
and the y-axis is the average time change rate of the physical quantity in a single time step 𝛥𝛥𝛥𝛥. The phase 
diagram effectively shows the distribution characteristics of sampled data. The physical quantities 
displayed include temperature and mass fractions of 8 species. The points are colored by temperature. 
The multi-scale effect of evolution of physical quantities brings challenges to neural network training. 

 

Figure 1: Phase diagram of sampled data, where the x-axis represents the magnitude of each physical 
quantity, and the y-axis represents its time change rate. The scatter plot is colored by temperature. 

3.2  Prediction Accuracy of the Neural Network 
Figure 2 shows the predicted evolutions of temperature, mass fraction of DME, and mass fraction of 
HO2 under the initial condition of 𝑇𝑇 = 750 𝐾𝐾 , 𝑃𝑃 = 10 𝑎𝑎𝛥𝛥𝑎𝑎  and 𝜑𝜑 = 1.0 . The neural network's 
prediction (green) agrees well with the DNS simulation based on the detailed chemical mechanism 
(yellow). Near the igniting moment when chemical species react violently, the neural network accurately 
predicts the temporal evolution of each physical quantity with a time step much larger than the built-in 
time step of the Cantera solver (on the order of 10-8 s). 

 

Figure 2: Temporal evolution of  (a) temperature 𝑇𝑇, (b) mass fraction of DME and (c) mass fraction of 
HO2 for the initial condition of 𝑇𝑇 = 750 𝐾𝐾, 𝑃𝑃 = 10 𝑎𝑎𝛥𝛥𝑎𝑎 and 𝜑𝜑 = 1.0. 
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Figure 3 shows the predictions of autoignition delays at different initial temperatures with 𝑃𝑃 = 10 𝑎𝑎𝛥𝛥𝑎𝑎 
and 𝜑𝜑 = 1.0. The neural network successfully predicts autoignition delays, including low-temperature 
ignition (LTI) and high-temperature ignition (HTI). Compared to results predicted by Cantera, the 
ignition delays predicted by the neural network have a mean relative error of 0.4% and a maximum 
relative error of 2.6%. Therefore, the two-stage ignition is accurately predicted by the neural network. 

 

Figure 3: Predictions of autoignition delays at different temperature 𝑇𝑇 for fixed 𝑃𝑃 = 10 𝑎𝑎𝛥𝛥𝑎𝑎 and 𝜑𝜑 =
1.0.  

In conclusion, a single neural network can learn the characteristics of LTC and HTC. The well-trained 
DNN can accurately predict the temporal evolution of physical quantities within a wide range of initial 
conditions. 

3.3  Physical Conservation 
In the above method, the neural network does not guarantee the conservation of elements. As the neural 
network method advances multiple time steps, the errors of elements accumulate and may lead to 
unstable prediction. A new neural network is trained based on the initial temperature 𝑇𝑇 = 1000−
1200 𝐾𝐾, initial pressure 𝑃𝑃 = 0.5 − 2 𝑎𝑎𝛥𝛥𝑎𝑎, and equivalence ratio 𝜑𝜑 = 0.8− 1.2. The time step remains 
to be 𝛥𝛥𝛥𝛥 = 10−6 𝐻𝐻.  

 

Figure 4: A test case with initial condition 𝑇𝑇 = 1000 𝐾𝐾, 𝑃𝑃 = 0.7 𝑎𝑎𝛥𝛥𝑎𝑎 and 𝜑𝜑 = 1.0.  
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Figure 4 shows a test case at 𝑇𝑇 = 1000 𝐾𝐾, 𝑃𝑃 = 0.7 𝑎𝑎𝛥𝛥𝑎𝑎 and 𝜑𝜑 = 1.0. Without considering element 
conservation, the neural network goes divergent (blue line). However, if the neural network predicts the 
temperature instead of calculating based on energy conservation, the neural network performs better 
(green line). The temperature 𝑇𝑇  predicted by energy conservation leads to an additional error of 
temperature 𝑇𝑇. 

We apply a correction method to ensure the conservation of elements. The final prediction of the neural 
network method, denoted as 𝑋𝑋1𝐷𝐷𝐷𝐷𝐷𝐷, leads to errors of elements 𝑠𝑠𝑖𝑖 

 𝑠𝑠𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖,𝑗𝑗(𝑋𝑋1𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑋𝑋0)𝑗𝑗𝑗𝑗  (4) 

In Eq. (4), i represents all the elements, and j represents all the species. 𝑎𝑎𝑖𝑖,𝑗𝑗 is the mass fraction of the i-
th element in the j-th species. The T and P components of 𝑋𝑋  are neglected because they have no 
relationship to element conservation. We choose the correction term 

 𝛥𝛥𝑋𝑋0𝑐𝑐𝑐𝑐𝑐𝑐 = argmin∑ 𝑎𝑎𝑖𝑖,𝑗𝑗𝑗𝑗 (𝛥𝛥𝑑𝑑)𝑗𝑗+𝑒𝑒𝑖𝑖=0 ∑ [(𝑋𝑋0)𝑗𝑗𝜆𝜆−1(𝛥𝛥𝑋𝑋)𝑗𝑗]2𝑗𝑗  (5) 

The right-hand side of Eq. (5) is a least square problem for 𝛥𝛥𝑋𝑋 and can be solved analytically. The 
parameter 𝜆𝜆 is just the one applied in BCT. Setting 𝑋𝑋1 = 𝑋𝑋1𝐷𝐷𝐷𝐷𝐷𝐷 + 𝛥𝛥𝑋𝑋0𝑐𝑐𝑐𝑐𝑐𝑐  as our new prediction, the 
conservation of elements is ensured. When both element conservation correction and energy 
conservation correction are applied, the neural network method works perfectly during the whole case 
(red line). The conservation of elements promotes the robustness of the neural network method. 

3.4  Computational Efficiency 
Cantera and the neural network are used to predict randomly selected data points for a single time step, 
and the average CPU time is calculated. Unlike the CVODE solver, the neural network is based on 
matrix multiplication and addition, which naturally has the advantage of parallel computing (predicting 
the evolution of multiple data simultaneously).  

Figure 5 shows the computational efficiency. It is seen that the computational efficiency of the neural 
network is about four times that of Cantera in terms of the efficiency of serial computing (predicting 
one by one). Furthermore, the computational efficiency of the neural network can be increased by more 
than an order of magnitude through parallel computing. The multi-point parallel computing may play 
an important role in the high-dimensional numerical simulation to improve the efficiency of the neural 
network method. 

 

Figure 5: Computational efficiency of Cantera and neural network. 
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4 Conclusions 

This study introduces the neural network method to solve the chemical source term. The method is 
demonstrated by solving isobaric homogeneous ignition in a DME/air mixture. The main conclusions 
are as follows: 

(1) The neural network method combined with BCT overcomes the multi-scale effect of data. It can 
accurately predict the time change rate of each physical quantity in thousands of steps of temporal 
evolution, using a time step far larger than the time step used by a traditional ordinary differential 
equation solver.  

(2) In a wide range of initial conditions, the neural network can accurately predict both two-stage and 
one-stage autoignition. LTC and HTC of DME can be accurately predicted by a single neural network.  

(3) The current neural network guarantees the conservations of mass, energy, and element, which is a 
fundamental requirement for the any surrogate model but frequently ignored by previous machine 
learning-related modeling. The physics-constrained network improves the robustness and training 
efficiency of the neural network method. 

(4) Compared with the Cantera solver, the computational efficiency of the neural network method 
increases by one order of magnitude. If parallel computing is combined for efficient calculation, the 
neural network is expected to improve the computational efficiency to a greater extent for complex 
combustion simulations.  

This study demonstrates the promosing application of neural network in improving the efficiency of 
chemical calculation. Combining the physics constraint to design a better neural network structure to 
improve robustness and stability is an interesting yet challenging task that needs more investigation in 
the future works. 
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