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1. Introduction

In a previous study [1, 2], we investigated the conditions under which the cross-section shape of a tube
influences the cellular structure of a detonation steadily propagating in this tube. The present experimental
work reports on the influence of the cross-section shape on the transient phenomena observed after a steady
detonation diffracts through a single-orifice plate positioned normally to the longitudinal axis of the tube.

The interaction of detonation and deflagration with perforated obstacles has been the object of a large
amount of work. Ciccarelli carried out a comprehensive review [3]. The topic is relevant to safety in indus-
trial plants, detonation enhancement or mitigation, e.g., [4]. Obstacles and perforated plates in tubes can
either enhance flame acceleration and deflagration-to-detonation transition (DDT) [5], or quench detona-
tions. Parametric studies include the effects of the blockage ratio, the spacing and the number of the orifices,
e.g., [6], the shape of the orifices, e.g., [7], the equivalence ratio and the initial pressure and temperature of
the mixture, e.g., [8], the regularity of the detonation cells.

To our knowledge, the cross-section shapes of the tube and the orifice in a perforated plate have yet to be
investigated, which is the object of the present work. Section 2 presents the experimental setup and the
methodology, section 3 the results, and Section 4 the discussion.

2. Setups and methodology

Figure 1: Schematic of the round tube (that of the square tube is similar). I: ignition device, S: Shchelkin
spiral, T: pressure transducers, P: perforated plate, F: soot foil, A: shock absorber.

We carried out the experiments in tubes with different cross-section shapes, namely round or square, but
with the same cross-section area 1600 ± 4% mm2. We chose the same shape of the orifice in the plate as
the tube cross-section, e.g., Fig.1. We defined the blockage ratio as the obstructed area of the plate relative
to that of the tube cross-section, that is BR= 1− (d/D)2 for the round tube, with d and D the diameters of
the orifice and the tube, and BR= 1 − (a/at)

2 for the square tube, with a and at the widths of the orifice
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and the tube. We considered the three values BR= 25, 50 and 75%. All plates have the same thickness of
5 mm.

We used a spark plug or an exploding wire for ignition, depending on p0, and a 700 mm long Shchelkin
spiral to ensure a rapid transition to detonation. The perforated plate was located 2750 mm ahead of the
ignition, and previous works [1, 2] showed the detonation has become steady at that distance.

We positioned soot-coated foils along the tube walls downstream of the plate to obtain longitudinal soot
recordings of the diffraction processes. In the square tube, we also positioned a foil upstream of the plate
to record the cellular structure of the detonation before its diffraction. All foils were 30 cm long.

We carried out chemiluminescence and shadowgraph recordings in the square tube after substituting quartz
windows for facing metallic walls. We positioned Kistler 603B pressure transducers coupled with Kistler
5018A electrostatic charge amplifiers upstream of the plate. We used their signals to trigger the high-
speed visualizations - and, additionally, to check the detonation steadiness and velocity. We chose the
offset depending on the detonation velocity. We implemented an HPVX-2 camera with a frequency ranging
from 1 to 5 MHz depending on the detonation velocity. The exposure time was between 200 and 500
ns for shadowgraph imaging and about 600 ns for chemiluminescence. We set the camera to detect a
large-spectrum chemiluminescence from the combustion process and its products. We could not implement
chemiluminescence for p0 ≤ 30.0 kPa because the emission signals had too weak magnitudes.

We positioned a ball of iron wool at the tube ends opposite the ignition. Its object was used to absorb
shocks and prevent possible re-ignition of the unburnt mixture in the cases where detonation failed to re-
ignite downstream of the obstacle.

The reactive gases were the stoichiometric mixtures 2 H2 + O2 and 2 H2 + O2 + 2 Ar. They were prepared
in a separate tank using the partial-pressure method and then injected at the desired initial pressure p0 after
vacuuming the tubes. The initial temperature was 294± 3 K, and p0 varied from 7.5 to 80.0 kPa.

3. Results

The table in Figure 2 summarizes the diffraction phenomena downstream of the obstacle for each considered
cross-section shapes, blockage ratio BRs, mixture compositions, and initial pressures p0. The analysis
evidences a major effect of the cross-section shape on the phenomenology of the detonation diffraction,
regardless of the other parameters. We observed five diffraction types, namely:

• F: Failure of detonation transmission.

• DDT: Deflagration-to-Detonation Transition,

• SSO: Shock-Shock Onset,

• CO: Onset at the corners of the square tube,

• SWO: Shock-Wall Onset,

With increasing p0, the re-initiation mechanisms in the round tube are DDT, SSO and SWO and, in the
square tube, SSO, CO and SWO. Their common feature is that the diffraction, downstream of the plate,
produces a diverging shock that first decouples from the combustion wave and then reflects at the tube
walls. The mechanisms distinguish from each other depending on the events after this reflection.

The DDT mechanism, e.g., Fig. 3b, is observed only in the round tube with the transition position varying
from one experiment to another, probably because of its high sensitivity to defects at walls. The usual
DDT process observed in tubes with large enough transverse dimensions comprises flame acceleration,
shock formation ahead of the flame, explosion between the flame and the shock, and relaxation into a
self-sustained detonation.
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Figure 2: Summary of the diffraction behaviors after the detonation passes through the orifice plate de-
pending on the cross-section shape of the tube, blockage ratio BR, Argon dilution and initial pressure
p0. F: detonation failure, SSO: Shock-Shock Onset, CO: Corner Onset, SWO: Shock-Wall Onset, DDT:
Deflagration-to-Detonation Transition.

The SSO mechanism, e.g., Fig. 3c and Fig. 3f, is detonation re-initiation at the tube axis resulting from the
focus of a converging shock originating from the tube wall(s). The reflection of the diverging shock at the
wall(s) produces Mach stems and a shock converging symmetrically towards the centre of the cross-section.
Its focus ignites a local explosion on the tube axis that eventually relaxes into a steady detonation. There
is no re-ignition at the wall(s) behind the Mach stems. The re-ignited detonation is first non-ideal because
its cell widths are first larger than for the self-sustained detonation, before decreasing to values identical to
those downstream of the plate. The non-ideal cellular structure with Argon dilution immediately after the
shock focus is more irregular than upstream of the obstacle.

The CO mechanism, e.g., Fig. 3d and Fig. 4, is detonation re-initiation at the corners of the square tube.
Each Mach stem produced by the reflection of the diffracted shock at a wall interacts with the other prop-
agating towards the same corner line along the adjacent wall. This interaction results in an overdriven
detonation, as its cells are smaller in the volume shocked by the Mach stems. This overdriven detonation
propagates in all directions in the shocked domain before relaxing into the self-sustained regime. The re-
initiation points are located at a shorter distance to the obstacle than the focus point of the converging shock
in the SSO mechanism.

The SWO mechanism, e.g., Fig. 3e and Fig. 4, is immediate detonation re-initiation at the impact locations
of the diffracted shock with the tube wall(s). In contrast to the CO mechanism, the Mach stem is strong
enough to immediately re-ignite the reactive mixture. The resulting explosion is an overdriven detonation -
because of its small cells - that eventually relaxes into the self-sustained detonation. The diffracted shock
shows a symmetrically-curved surface, regardless of the cross-section shape of the tube. The contact set
with the wall of the round tube is a circumferential line. The contact set with the walls of the square tube
comprises four points, each located on the centre line of each wall, at mid-distance from its corner lines.

We found that the re-initiation distances for SSO, CO, and SWO depend only on the cross-section shape
and BR, without observable effects of p0 or the Argon-dilution, in the considered ranges of their variations.
Indeed, the soot plates and the shadowgraph images show diffracted waves and reflected shocks that follow
roughly the same path regardless of p0 or the Argon dilution. In the square tube, we observed smooth SSO-
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CO and CO-SWO transitions with increasing p0 for each chosen BR and Argon dilution. That explains
why soot traces are sometimes asymmetrical when the CO mechanism occurs at one pair of facing walls
and the SWO mechanism at the other. We speculate that only the DDT and SSO processes coexist in the
round tube if the DDT run-up distance is short enough.

Regardless of the diffraction type, the limiting initial pressure p0 separating detonation failure from trans-
mission depends on the cross-section shape of the tube, depending on the mixture and BR. For example,
the limiting p0 is between 12.5 and 15.0 kPa in the square tube, and p0 = 40.0 and 50.0 kPa in the round
one for BR= 75% and the Argon-diluted mixture, e.g., 3b.

4. Discussion

The results above show that the cross-section shape of the tube has a strong influence on the transients
mechanisms of detonation diffraction through an orifice with the same cross-section shape as the tube.
Five diffraction types are identified, namely F, DDT, SSO, CO and SWO. Given the mixture and BR, this
influence manifests itself both by the nature of the detonation re-initiation mechanisms and the ranges of
initial pressures for observing one or another mechanism.

Overall, detonation transmission in the square tube is achieved with a lower p0 than in the round tube,
other parameters being equal. In our former work [1,2], we showed that the cross-section shape of the tube
influences the cell widths and patterns below a limiting initial pressure p0, with smaller cells in the square
tube. Therefore, the present results are coherent with the former because their respective ranges of p0 partly
coincide with each other. Nevertheless, whether the diffraction mechanism is independent of the tube cross-
section shape with p0 sufficiently large, and whether the diffraction behaviours and the cell patterns of the
steady detonation are independent of this shape for the same limiting p0, have yet to be investigated.
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Figure 3: Examples of soot recordings obtained in the square (left) and round (right) cross-section tubes
for BR= 75% and tube cross-section area 1600 ± 4% mm2. a: Detonation failure, b: SSO mechanism, c:
DDT mechanism, d: CO mechanism, e: SWO mechanism.
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Figure 4: Superimposed shadowgraph and chemiluminescence images of CO (left) and SWO (right) mech-
anisms in the square tube, with corresponding soot recordings (bottom).
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