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1 Introduction
To date, a vast majority of multi-dimensional numerical simulations of detonation waves have relied on
solving Euler’s equations of fluid motion, which fundamentally assumes inviscid flow behavior. That
is, solving Euler’s equations does not account for turbulent mixing, molecular diffusion, or boundary
layer effects near walls. While many investigations have not successfully captured exact experimental
observations, some have been able to show that, with sufficient resolution, regular and mildly irregular
detonation structures at near-CJ velocities are recovered quite well, at least qualitatively [1–3]. For
much higher global activation energies, i.e., increased irregularity, solving the Euler equations have
only yielded limited success [4]. It was found that although Euler simulations can provide limited
insight into the roles that shock compression or turbulent motions may have on detonation propagation,
the solutions obtained for high activation energies were subject to changes in resolution and did not
converge to unique solutions [4].

Two-dimensional direct numerical simulations (DNS) of the Navier-Stokes equations addressed this
problem by attempting to resolve the full spectrum of scales present, which included viscous and molec-
ular diffusion effects. Such investigations [5–9] have revealed that practically attainable resolutions,
in many full-scale two-dimensional problems, are insufficient to capture the correct reaction rates of
shocked reactive gas and the corresponding cellular structure. What was found, however, was that
physical diffusion is important to consider at high resolution when numerical diffusion becomes negli-
gible [5]. In fact, we have previously demonstrated that closure of turbulent mixing rates plays a major
role in determining the detonation cell size [10], especially for methane-based high activation energy
mixtures. Using the compressible linear eddy model for large eddy simulation (CLEM-LES) for a calor-
ically perfect gas equation of state, and using a one-step combustion model, it was found that providing
closure to the turbulent mixing rates can permit the establishment of the correct expected cellular pat-
tern when compared to experiments. However, no-slip boundary conditions and associated losses due
to boundary layers were not accounted for. Thus, experimentally observed velocity deficits and their
additional impact on the cellular pattern were not recovered. When the CLEM-LES approach was de-
veloped, the turbulent diffusivity (mixing rates), and the dissipation rates were formulated in terms of
the Kolmogorov number, Cκ. Typically, Cκ is estimated from experiments to be ∼ 1.5, however pub-
lished values range anywhere from 1.2 to 4 [11]. In fact, we found that the cellular structure of the
detonation wave was heavily influenced by the tuning of Cκ, and is how we concluded that not only
are detonation waves controlled by the chemical reaction rate and its sensitivity to compressibility of
the gas, but is also heavily influenced by the rates of turbulent mixing [10]. In our past-work, however,
we mostly investigated two-dimensional situations without momentum or energy losses, and in order to
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capture experimentally observed cellular structures, a Cκ value of 6.7 was required. Since then, we have
treated Cκ as a tuning parameter.

In the current work, we revisit the application of the CLEM-LES for a calorically perfect gas detonation
in an attempt to clarify the role of the Kolmogorov number, and whether or not it should be treated as
a tuning parameter. We perform three-dimensional simulations of detonation propagation in methane–
oxygen, in a thin-channel, and also include no-slip walls as boundary conditions. Instead of tuning the
Kolmogorov number to obtain the desired cell size, as we’ve done in the past, we instead use a standard
value of 1.5 and compare to experiments accordingly.

2 Numerical Approach

For the highly compressible and transient flow at hand, the governing Navier-Stokes equations are fil-
tered using the large eddy simulation (LES) methodology. For a calorically perfect gas, the conservation
equations for mass, momentum, energy, and subgrid kinetic energy are:
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where ρ, p, e, T , u, and ksgs refer to density, pressure, specific sensible + kinetic energy, temperature,
velocity vector, and subgrid kinetic energy, all of which are normalized by the quiescent reactive mixture
properties, see [10]. Other usual properties to note are the heat release, Q, the ratio of specific heats, γ,
the kinematic viscosity, ν, the dissipation rate, ϵ, the viscous shear stress tensor, τ , the Prandlt number,
Pr, the chemical reaction rate, ω̇, and the identity matrix, Î . The subscript ‘t’ refers to a turbulent
quantity. f represnts a spatially averaged value of f , and Favre-average (LES) filtering is achieved
through f̃ = ρf/ρ̄, where f represents one of the many state variables (ρ, p, e, T , u, and ksgs). The
turbulent viscosity and dissipation are modelled according to
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Here, ∆̄ is the minimum grid spacing (which corresponds to the LES filter size), and Cκ is the Kol-
mogorov number. Treatment of near-wall turbulence is provided through the wall modelling approach
of Kawai and Larson [12]. Then, like in any other reactive LES approach, the chemical reaction source
term, ω̇, requires closure. This is achieved using the CLEM sub-grid modeling strategy [10] which
includes first order one-step Arrhenius chemical kinetics. We use the same model parameters as our
previous work [10] to simulate detonations in premixed methane–oxygen (CH4+2O2 at po = 3.5 kPa),
with the exception of the Kolmogorov number, which we intentionally set to a standard accepted value
of Cκ = 1.5. The LES filter size was varied to study the effects of LES grid resolution, while a minimum
LEM subgrid resolution of 19.5 μm was used for all simulations. This subgrid resolution was previously
found to resolve laminar flame structures behind shock strengths corresponding to 0.7MCJ, see [10].

The three-dimensional numerical domain simulated was x = 9m long with a 25mm × 100mm cross
section in the y and z directions, respectively. This length was chosen to permit a quasi-steady evolution
of the detonation wave to form, and for turbulence statistics to be collected. The cross sectional geometry
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corresponded to the experiments of Kiyanda and Higgins [13], for which schlieren diagnostics and wave
velocity measurements have been obtained. To initiate the wave, an over-driven ZND profile was placed
in the first 200 mm of the domain, with an overdrive factor of f = 1.2. All boundary conditions were
specified to be no-slip wall conditions.

3 Quantitative and Qualitative Comparison to Experiment

Upon initiation of the detonation wave in each simulation, we first measured the wave speed as a function
of time in the x-direction, along the geometric centre of the domain. For averaging of the unsteady wave
velocity, we discard measurements before the first 0.001 s of the simulation. This is to allow the over-
driven wave to settle to a quasi-steady average velocity, which was below the CJ-velocity of MCJ = 6.30
in all cases. A summary of detonation velocities obtained using other LES-filter sizes is shown in table
1. In general we found an increasing trend in average detonation velocity by decreasing the LES-filter
size. However, as we approached ∆̄ = 0.3125 mm, the average detonation velocity changed by only
1.3% when compared to ∆̄ = 0.625 mm. We also note that for cases where ∆̄ > 0.625 mm, only a
short window of measurements was possible prior to eventual failure of the detonation wave. In these
cases, the detonation velocities obtained were not sufficient to permit a self-sustained and quasi-steady
propagation of the detonation wave.

Also shown in table 1 are the experimentally measured detonation wave velocities in both Kiyanda and
Higgins [13], and also our previous experiments [10] which had double the domain height and a slightly
smaller cross section at only 19 mm. We note that by specifying no-slip boundary conditions, a sufficient
momentum loss is introduced causing the wave to propagate with a steady velocity deficit. In Kiyanda
and Higgins, the detonation velocity was measured to be MCJ = 5.53, while our simulated velocity
was found to be comparable, but slightly lower at MCJ = 5.22 for ∆̄ = 0.625 mm or MCJ = 5.29 for
∆̄ = 0.3125. We attribute this ∼ 5% difference to slightly larger diffusion coefficients in the simulation
compared to real values, owing to the necessary scaling to permit post-shock flames to propagate at the
correct speed using our perfect gas assumption and one-step modelling strategy. Despite this difference,
we demonstrate that by specifying no-slip boundary conditions, and thus accounting for the momentum
loss due to boundary layers, the current simulation is a significant improvement on our previous two-
dimensional simulations [10], which were always found to propagate within 1% of the CJ-velocity.

A direct comparison of numerical schlieren images for ∆̄ = 0.625 mm and ∆̄ = 0.3125 mm to ex-
perimentally obtained schlieren images [13] is shown in figure 1. Both the experimental and simulation
images are shown to the same scale and time intervals between frames. Both simulations have a remark-
able qualitative agreement with the experiment, especially for ∆̄ = 0.3125 mm where finer details are
resolved. Both filter sizes compare well to experiments in terms of the cell size, the decoupling dynam-
ics of the reaction zone from the incident shock, the formation of an unburned tongue and pockets of
reactive gas, and location of the transverse shock waves.

4 Energy Density Spectrum

In order to gain some further insight into the turbulent nature of the detonation wave simulated, turbulent
statistics were collected along the geometrical center of the domain cross section (y = 12.5mm and
z = 50mm), in the x-direction. Specifically, velocity fluctuations u′, v′, and w′ were measured along this
line, using the shock location as a reference point, and the energy spectrum was constructed accordingly.
To measure u′, however, we first obtain the average velocity profile in the x-direction. For each instance
in time considered, we first locate the position of the incident shock wave, where the density increases by
10%. From this, the u velocities are superimposed for each instance in time and averaged accordingly,
using the shock location as a reference. For example, figure 2a shows the an instantaneous u(x, t)-
velocity field and the ensemble-averaged u(x)-velocity field, for ∆̄ = 0.625 mm, where the shock
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Table 1: Quasi-steady detonation velocities (MD) obtained using different LES-filter sizes (∆̄).

∆̄ MD before failure MD/MCJ % change detonation failure?

2 mm 4.51 0.72 - yes
1.25 mm 4.98 0.79 10.4% yes
0.625 mm 5.22 0.83 4.8% no

0.3125 mm 5.29 0.84 1.3% no
Kiyanda and Higgins [13] 5.53 0.88 - no
Maxwell et al. (LES) [10] 6.35 1.01 - no
Maxwell et al. (exp) [10] 5.19 0.82 - no
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Figure 1: Comparison of (a) schlieren images from [13] to (b & c) numerical schlieren images (density gradients)
obtained from simulations at a cross-section corresponding to y = 12.5 mm for ∆̄ = 0.625 mm and 0.3125 mm.
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Figure 2: (a) Average and instantaneous velocity fluctuations in the x-direction, in the shock-frame of reference,
and (b) the energy spectrum obtained for all velocity fluctuation correlation components for ∆̄ = 0.625 mm. The
-5/3 slope is indicated for reference.

location is used as the reference location. In total, 200 instances in time were averaged together to
obtain the average u-velocity from which to obtain the instantaneous velocity fluctuation, u′. Once u′,
v′, and w′ were obtained, the energy spectrum was calculated for each of the 200 instances in time.
This was done by applying the Fast-Fourier Transform (FFT) algorithm of [14] to the spatial statistical
data for velocity correlation, Ri,j(x) = u′i(x)u

′
j(x), to determine the respective energy density spectra

at given wave numbers, and using the incident shock location as the frame of reference. This is in
contrast to the past work of [15], where turbulent statistics of detonation wave-turbulence interactions
were collected temporally at fixed laboratory frame of reference locations.

Once the energy spectrum was obtained for each instance in time, they were ensemble-averaged to-
gether, and is shown in figure 2b. Also shown in the figure, for reference, is the -5/3 slope, which
is the power-law associated with the transfer of large scale turbulent kinetic energy to smaller scales
through the incompressible and isotropic Kolmogorov energy cascade. Despite the compressible nature
of detonation waves, it appears that the transfer of energy density tends to follow the -5/3 power-law,
for all i,j components, for κ > 0.2 mm−1. To confirm, the power spectra for each component, in this
range of κ, was curve fit to a power law. The corresponding exponential dependence, m, is indicated
for each component in the figure. In general, the rate of decay was found to be within ∼1/3 of the
theoretical -5/3 slope. Also, each of the different spectra were found to collapse onto each other at high
wave numbers, with the exception of the E33(κ) spectrum. At low wave numbers, κ < 0.1 mm−1, we
found that E33 > E11 > E22. This suggests that at low wave numbers, the thinness of the domain
restricts kinetic energy fluctuations in the y-direction. As a result, most of the kinetic energy lies in the
x-z plane. We believe kinetic energy is thus transferred to the z-direction through shearing of the flow
involving the w′-Reynolds stress components. The significant velocity fluctuations in the z-direction are
then transferred to higher wave numbers accordingly. We do note, however, that the total kinetic energy
for the bulk u2-component is actually much greater than its fluctuating component, owing to the fact
that there is significant average forward motion of the gas behind the shock. The non-zero magnitude of
the energy spectra associated with the Reynolds stress components further suggests that the turbulence
cascade is in fact not isotropic [16].

5 Conclusions
In this work, we revisited the application of the compressible linear eddy model for large eddy simula-
tion (CLEM-LES) to a calorically perfect gas detonation, in methane-oxygen, and attempted to clarify
whether the Kolmogorov number should be treated as a model constant, or a tuning parameter. We used
past model parameters for the CLEM-LES [10], but extended to three-dimensions with no-slip wall
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boundary conditions. We found that by doing so, and using a standard value for the Kolmogorov num-
ber (Cκ = 1.5) instead of tuning the value to desired results, we were able to capture the corresponding
experimental wave velocity [13] to within 5%, while also capturing the corresponding cellular structure.
This is a significant improvement on our past implementation of CLEM-LES to simulate methane–
oxygen detonations, which did not account for no-slip wall conditions, nor capture the experimental
velocity deficit (16% below CJ), and required tuning of Cκ to develop the desired cellular structure.

Finally, upon constructing the resulting energy spectrum of the simulation, using the incident shock
location as a frame of reference, we found that the kinetic energy cascade (transfer of large scale turbu-
lence to small scales) follows the well-known -5/3 power law description of incompressible turbulence
in the inertial subrange, albeit not symmetric in every direction. The thinness of the channel was found
to restrict velocity fluctuations in the y-direction at low wave numbers. This was found to lead to in-
creased velocity fluctuations in the z-direction at all wave numbers. Also, the non-zero energy density
associated with the Reynolds stress contributions, at high wave numbers, suggest the turbulence is in
fact not isotropic.

This research was enabled in part by high performance computing resources provided the Core Facility
for Advanced Research Computing at Case Western Reserve University.
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