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1. Introduction

First identified experimentally in the late 1950s [1], the cellular structure of the detonation reaction zone in
gases is viewed today as an example of non-linear instability of combustion waves in compressible reactive
fluids, e.g. [2, 3, 4]. It is now recognized that physical representations of this unsteady structure can only
be three-dimensional. Experimental and numerical analyses of front views of detonation waves, e.g. [5, 6],
evidence that the cellular structure is made up of irregular patterns if the number of cells on the front
surface is sufficiently large. That is typically observed in the case of detonation propagation in tubes with
cross sections sufficiently large because the usual cell descriptor, namely its mean width λ, decreases when
increasing the initial pressure p0 of the gas. The accepted modelling framework then involves hydrodynamics
and chemical kinetics solely and no significant participation of viscosity, for example, from boundary layers
and turbulence. A topic of debate is whether a unique characteristic length is relevant to characterizing a
3D cell. The model below assumes that such is the mean width λ and, therefore, elaborates on the analysis
outlined from our recordings of three-dimensional detonation cells [5] and presented to the 28th ICDERS
(Naples 2022, paper #57).

The three ingredients are graph theory, geometric probabilities and the Zel’dovich-Von Neuman-Döring
(ZND) model of planar detonation. First (Sect.2), we express the physical premise that the 3D unsteady
cellular process for irregular cells is stochastic and should produce the same burnt mass as the average
planar steady ZND process per unit of time. Then (Sect.3), we use graph theory to define an ideal cell
whose grouping is equivalent to the real 3D cellular front [5] and geometric probabilities to determine
the mean burnt fraction that parameterizes the model. Finally (Sect.4), we implement the ZND model
with detailed schemes of chemical kinetics to calculate the relation time-position of a fluid element in
the ZND steady reaction zone, respective to its leading shock, which closes the problem of determining
λ. The comparison of measured and calculated λ shows agreement to better than or within the accepted
experimental uncertainties, depending on the reactive mixture, its initial pressure p0 and equivalence ratio.
Thus, the quality of this estimate is dependent solely on that of the chemical kinetics scheme, the modelling
assumptions aside. The model is readily implementable as a post-process of ZND profiles that provides
instantaneously the estimates of the cell width, length and reaction time, as well as the ZND reaction
length and time.

2. Model

The basic assumption is that the cellular and ZND processes burn the fresh mixture at the same mass
rate for sufficiently large periods and the same projected front area. Let t and z denote the time and the
position in the ZND reaction zone, respective to its leading shock, and ∆tC the period during which the
ZND front travels the distance LC representing the length of the ideal cell. For the self-sustained detonation
propagating at the Chapman-Jouguet (CJ) velocity DCJ,

LC = DCJ∆tC. (1)

A reaction time below refers to the period necessary to completely burn all fluid elements captured by a front
at the initial instant t = 0 and through the same reference surface area. Thus, in the ZND process, denoting
by tZ its reaction time, the fluid elements entered in the reaction zone during the period 0 < t ⩽ tZ can
only be partially burnt at tZ. That results in the mean ZND burnt fraction ȳZ and reaction rate ȳZ/tZ. In
the cellular process, the front is a grouping of forward-convex waves whose forefront velocities for irregular
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cells randomly vary about the ZND mean velocity, such as DCJ. Their boundaries are the intersections with
transverse waves that sweep the surfaces of the forward waves with lower velocities. High-speed recordings,
e.g. [7, 8, 9] indicate that combustion is ensured at an instantaneous rate much rapid in the domains behind
the transverse waves and the forward waves with higher velocities, that is, much faster than the mean
cellular rate. A symmetry argument then suggests that the reaction time, as defined above, of the ideal
cell should be half the cell time ∆tC/2. Indeed, the period [0,∆tC/2] is that necessary, on average, for the
transverse waves to sweep a projected front area equivalent to the maximum area of the ideal cell, which, by
symmetry, occurs every cell half length LC/2. Thus, during this period, they cover the surface of the ideal
cell, and they can capture and burn all the fluid elements that have crossed the lower-velocity front surfaces
since t = 0. That results in the mean cell burnt fraction ȳC and reaction rate 2/∆tC–and not ȳC × 2/∆tC.
These means of the mass fractions yZ and yC are relative to periods elapsed since t = 0. They write

ȳZ =
1

tZ

∫ tZ

0

yZ(t
′)dt′, ȳC =

2

∆tC

∫ ∆tC/2

0

yC(t
′)dt′, (2)

where the subscripts Z and C denote the ZND and the cellular processes. The first definition above also
applies to any variable, for example, the material speed UZ (t) = dz (t) /dt at the time t, or the position
z (t) of a fluid element, in the ZND reaction zone. This defines the ZND reaction length ℓZ by

ℓZ =

∫ tZ

0

UZ(t
′)dt′ = ŪZ × tZ, ŪZ =

ℓZ
tZ

, (3)

where ŪZ denotes the mean of UZ (t). With v denoting the specific volume, and v0 its initial value, the
relation of mass conservation written as vZ(t)DCJ = v0UZ(t) at the position z (t) can also be averaged, so
(3) rewrites

ℓZ =
v̄Z
v0

DCJ × tZ, (4)

v̄Z (ȳZ) = (1− ȳZ) vH + ȳZvCJ. (5)

Relation (5) results from the averaging of the volume additivity constraint v =
∑

yivi, where vi and yi
denote the specific volume and the mass fraction of the chemical species i, and vH and vCJ the specific
volumes at the ZND shock and reaction end positions.

The equality of the mean reaction rates of the cellular and ZND processes implies that of their mean
reaction progress variables ȳC and ȳZ respective to their reaction times ∆tC/2 and tZ, so

2

∆tC
=

ȳ

tZ
, (6)

where ȳ denotes ȳC = ȳZ. The combination of (1) with (6) gives the relation (7) between the cell length
LC and the ZND reaction time tZ, which, with (4) and (5), gives the relation (8) between LC and the ZND
reaction length ℓZ, that is,

LC1 (ȳ, tZ) = k1 × tZ, k1 (ȳ) =
2

ȳ
DCJ, (7)

LC2 (ȳ, ℓZ) = k2 × ℓZ, k2 (ȳ) =
2

ȳ

v0
v̄Z (ȳ)

. (8)

In the next section, graph theory is used to define a cellular pattern statistically equivalent to those on
an irregular 3D cellular front, hence the ideal cell to which geometric probabilities are applied to obtain ȳ.
The cell length LC is defined by the intersection of the curves LC1 (t) = k1× t and LC2 (t) = k2× z (t), with
the relation time-position z (t) of a fluid element preliminary determined through classical ZND numerical
calculations with a detailed scheme of chemical kinetics. The ZND reaction time tZ and length ℓZ are then
obtained from (7) and (8), and, finally, the cell width λ̄ is geometrically related to LC.
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3. Graph theory and geometric probabilities

In our preliminary analysis [5], we considered the front-view distribution of the same pattern, for example,
rectangle, pentagon, hexagon, etc., to be statistically independent of the front position if the cell number
F , that is the initial pressure p0, is sufficiently large. Indeed, several experiments carried out in the same
conditions should return the same distribution. We used elements from planar graph theory to show that
these irregular front views are equivalent to tessellations of hexagons. This was obtained by combining the
physical condition that only three transverse waves can intersect with the mathematical limit at large F of
the Descartes-Euler-Poincaré relation F −E+V = 2 that connects the numbers of faces F (the cells), edges
E (the transverse waves) and vertices V (the edge intersections) in a tessellation. For three-edge vertices,
2E = 3V , so the limit at large F of the edge number per face 2E/F is 6. One consequence is that a cell
counting on an experimental recording gives an estimate of the cell mean width through

λ̄ =
3 ln 3

π

√
3

2
dx, dx =

√
8

3
√
3
AC, AC =

AT

F
, (9)

where dx and AC are the outer diameter and the area of the hexagon, and AT the cross-section area of
the tube. Another consequence, detailed below, is that a combination of properties of this representative
tessellation and geometric probabilities predicts the mean reaction progress variable ȳ and hence the cell
mean width λ̄ (Sect.2). The premise is that the motion of the transverse waves for irregular cells is stochastic.

First, we define a control volume with the surface area AC and the half length LC/2 of the ideal cell. We
denote by MC the mass contained in this volume, M (t) the mass having crossed the area AC since t = 0 at
the intermediate instant 0 < t ⩽ ∆tC/2 (or the front position 0 < x (t) ⩽ LC/2 in the laboratory frame),
and MB (t) the mass burnt at this instant t. They write

MC = ρ0AC × LC

2
, M (t) = ρ0AC × x (t) , MB (t) = ρ0AB (t)× x (t) , (10)

where ρ0 denotes the initial specific mass and AB (t) the surface area swept by the transverse waves at the
instant t since t = 0. Thus, the burnt mass fraction yC at the instant t is

yC (t) =
MB (t)

M (t)
=

AB (t)

AC
, (11)

so its mean ȳC (2) is the mean combustion area respective to the cell area AC.
Next, we express the stochasticity of the transverse-wave motion. The successive positions of the trans-

verse waves in a same experiment, projected onto the surface of the ideal cell, should be statistically
equivalent to those obtained from one experiment to another at the same front position, that is, to those of
line segments randomly dropped onto the surface. This ensures that combustion efficiency is, on average,
independent of experiment. Thus, ȳC is the probability that the segments are completely contained in the
cell surface, that is, the non-intersect probability, for the propagation period ∆tC/2. The calculation is a
classical problem of geometric probabilities, namely the Buffon’s needle problem extended to a surface with
a hexagonal tiling and needle lengths varying between 0 and the hexagon outer diameter dx. In the many
accounts of such problems, the non-intersection probabilities are expressed as a ratio µC/µ, where µ is the
measure of the space of the independent variables representing all the random orientations and positions
of a segment, and µC the measure of the subspace in which these variables should vary so the segments
do not intersect the boundaries of the typical tessellation element. For the hexagon, we extend below to a
variable-length segment the solution by Vassallo [10] for a constant-length segment. We do not reproduce
his calculations for conciseness and because of the clarity of his account. The independent variables are the
segment length s varying in [0, dx], its angle θ varying in [0, 2π], and the coordinates of its center varying
in the cell surface of area AC. The non-intersection constraint demands this center to be contained into
a smaller surface than that of the cell, and whose shape and area depend on the segment orientation and
length. Nondimensionalizing the lengths by the side length dx/2 of the typical hexagon, and denoting by
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r = 2s/dx the non-dimensional segment lengths, we have

µ = 6π
√
3, µC = m1 +m2 +m3, mi =

∫ ri2

ri1

µi (r) dr, (12)

r ∈ [r11 = 0, r12 = 1] , µ1 (r) = 3π
√
3− 12r + r2

(
3− π/

√
3
)
, (13)

r ∈
[
r21 = 1, r22 =

√
3
]
, µ2 (r) = π

√
3
(
r2 + 5

)
− 9

√
4r2 − 3 ... (14)

... − 2
√
3
(
3 + 2r2

)
arcsin

(√
3/2r

)
, (15)

r ∈
[
r31 =

√
3, r32 = 2

]
, µ3 (r) = 2

√
3
(
r2 + 12

)
arcsin

(√
3/r

)
... (16)

... + 30
√

r2 − 3−
(
8π

√
3 + 18

)
− r2

(
3 + 2π/

√
3
)
, (17)

m1 = 10.720, m2 = 1. 837 4, m3 = 1.154 7× 10−2, (18)

where the µi s are Vassallo’s non-intersection measures for constant segment lengths [10] and the mi s ours
for segment lengths varying in the intervals [0, dx/2],

[
dx/2,

√
3dx/2

]
and

[√
3dx/2, dx

]
. This gives the

non-intersection probability, that is, the mean burnt fraction ȳC (≡ ȳ, Sect.2), by

µ = 32.648, µC = 12.569, ȳ =
µC

µ
≈ 0.38498, (19)

so, from (6), the cellular process takes, on average, ∆tC/tZ ≈ 5.2 times longer than the ZND process to
achieve combustion.

Finally, we obtain the aspect ratio λ̄/LC by combining stochasticity and, inspired by [11], geometry.
Since the transverse waves have a stochastic motion, their positions can be considered to be the same every
period ∆tC, so the longitudinal overdriven front waves of the model cellular front should superimpose on
each other every distance LC. Equivalently, these waves can be viewed as the upper surface elements of
spheres arranged in the hexagonal closest packing, that is, with alternate layers in the ABAB ... sequence.
The sphere diameter is also the distance between the centers of adjacent spheres and the inner diameter of
a hexagon, di, so the ratio LC/di comes out as twice the height of the tetrahedral pyramid whose base is
the triangle with vertices the centers of the three closest spheres in the same layer. Simple geometry then
gives LC/di =

√
8/3 and di/dx =

√
3/2. With the first relation (9), that yields the mean cell aspect ratio

λ̄

LC
=

3 ln 3

π

√
3

8
≈ 0.64244 (20)

and opening angle 65.4o well representing the measurements on longitudinal recordings and, with (6), (19)
and the basic relation between mass and volume fractions, the ratio of lengths LC/ℓZ and λ̄/ℓZ which take
the accepted large values of ≈ 20− 40, depending on vH and vCJ.

4. Results and discussion

For conciseness, we do not detail in this abstract the classical system of 1st order ordinary differential
equations that governs the ZND model. The quality of the chemical kinetics schemes implemented in the
ZND calculations determines that of the cell mean width estimates by the model above, its assumptions
aside. We selected mixtures with H2, C3H8 or CH4 as the fuel and O2 or Air as the oxidizer because of their
practical importance and the attention they have received from kineticists, and we thus used the Konnov
[12] and the FFCM-1 [13] detailed schemes.

Figure 1 compares the calculation results (full and open symbols , , ) to measurements in tubes
(crosses) as presented in the detonation database [14]. Denoting by d the transverse dimensions of the
tubes, the black (+) and grey (×) crosses denote values of the ratio λ̄/d smaller and larger, respectively,
than the arbitrary magnitude O(10). That gives O(100) cells on the front surface, which we considered
to be a number sufficiently large to meet the model’s basic assumption. We collected the tube dimensions
from the original references.
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The comparison shows a very good agreement by the trends and the magnitudes and, in most cases,
to better than the ≈ 50 − 100% typical standard deviation for the mean width of irregular cells. Overall,
the smaller the cell mean width compared to the tube dimension, i.e., the black crosses +, the better the
agreement, consistent with the assumption of many cells on the front surface. The agreement is also better
with mixture compositions close to the stoichiometric balance, perhaps because this is the usual calibration
range of kinetic schemes.

The cell mean width is still considered to be a useful characteristic length in detonation dynamics,
although the complex 3D patterns observed on detonation front views question the sufficiency of its repre-
sentativeness and are the likely reason for the large standard deviations. In view of this intrinsic limitation,
we felt that simple global modelling could yield a representative cell width sufficiently accurate for practical
purposes without detailing the complex wave interactions that form the cellular structure.

Our approach does not pretend to explain how the detonation reaction zones are unstable and only
assumes a global equivalence of the ZND and cellular processes expressed by basic conservation and action
principles. Since its implementation is an easy post-process of ZND profiles, a complementary application is
its use as an inverse method to assess the representative capacity of kinetic schemes from cell measurements
obtained in conditions that eliminate the confinement effects. Current work includes a better represen-
tation of the cellular front using a Voronoi tessellation with a statistical distribution of several patterns,
other mixtures and schemes–we obtained the same good agreement with the San-Diego mechanism, where
applicable–and a comparative discussion with regular cells, which we hope to also present to the Colloquium.
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Figures

Figure 1: Comparison of calculated and measured cell mean widths λ̄. Full and open symbols: calculations using
the Konnov [12] ( and ) and the FFCM-1 [13] ( ) schemes of chemical kinetics. Crosses: measurements [14] with
small (⩽ O(10), black +) and large (⩾ O(10), grey ×) ratios λ̄/d, with d the transverse dimensions of the tubes.

Submitted to the 29th ICDERS – July 23 - 28, 2023 – Seoul, Korea January 6th, 2023 6


	Introduction
	Model
	Graph theory and geometric probabilities
	Results and discussion

