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1 Introduction 

Advances in computing power now allow detailed numerical simulation of a wide variety of chemically 

reactive flows in complex pathways, yet there is a strong need of development of model order reduction 

techniques. In fact, fast and accurate models are required in real-time control applications or in the 

detailed study of systems characterized by a large number of state variables and/or operating parameters. 

A widespread and powerful technique, especially when it comes to the reduction of nonlinear infinite 

dimensional systems described by evolutionary partial differential equations (PDE), is Proper 

Orthogonal Decomposition (POD) [1]. Either from experimental or numerically derived observations, 

POD delivers a set of empirical basis functions which can be introduced into classical subspace 

projection approaches for model order reduction such as the Galërkin method. POD-Galërkin has been 

widely used for model reduction in many fields, however there are still issues that need further 

investigation. Among the others, the policy of the collection of a representative set of experimental or 

simulation data is crucial for generating a global basis suitable for the determination of accurate Reduced 

Order Models (ROM). While the exploration of the parameter space is a well-established policy [2], 

there is no clear indication in the literature about the influence of the total number of snapshots and their 

distribution on the ROM performance. Recently, a methodology based on the mutual information for 

the selection of the most uncorrelated snapshots was proposed [3]. An alternative approach, based on a 

similar principle, was proposed later [4]; it comes down to selecting the most informative snapshots 

based on clustering methodology. Moreover, it is well known that POD reduced models do not generate 

efficient numerical codes when dealing with nonlinear equations in the primitive variables, in that it is 

still necessary to reevaluate matrix coefficients in the new conditions at each simulation time step, and 

this can make the whole approach highly inefficient. To overcome this limitation, Discrete Empirical 

Interpolation Methods (DEIM) have been proposed and employed, requiring reevaluation of the 

nonlinear terms in correspondence of a given set of optimally located state space points [5]. 

In this work, the method of POD is applied to a problem of self-ignition of a coal stockpile, described 

by two-dimensional reaction-diffusion equations [6]. Aiming at the improvement of the ROM 

performance, different sampling strategies, clustering and DEIM nodes collocation are studied. The 

performances of various POD-DEIM ROMs determined from various time sampled sets of 

representative solutions are compared among each other, and conclusions are drawn. 
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2 Mathematical model  

The analyzed geometry for a coal stockpile is the infinitely long slab with rectangular cross section 

shown in Fig. 1a. The lower side of the domain lays on the ground, the upper and the right sides are 

exposed to ambient conditions, whereas the left side corresponds to the longitudinal symmetry plane of 

the pile. The gaseous reactant diffuses through the porous medium and reacts according to a first-order 

one-step exothermic chemical reaction. The classic Arrhenius exponential expression is used to describe 

the temperature dependence of the reaction rate. Consumption of the solid reactant is neglected, thus, 

only one mass balance equation for the gas reactant is formulated. Gas and solid temperature are 

assumed to be equal, resulting in only one energy balance equation. Based on the above assumptions 

the model equations are: 
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where c is the dimensionless concentration of the gas reactant, 𝑇 is the dimensionless  temperature, Le, 

the Lewis number, is the ratio between mass and heat diffusivities, β is a dimensionless heat of reaction, 

ϕ is the thermal Thiele modulus, and γ is a dimensionless activation energy. Boundary conditions are: 
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The problem is supplemented with the following initial conditions: ( ) ( ), ,0 1, , ,0 1c x y T x y=   =  .  

3 Proper Orthogonal Decomposition, Discrete Empirical Interpolation and k-

Means Clustering 

For a given set of snapshots ( ) 1 2, , [ , ,... ], 1,...,i Nt x x x i M= =y x x , collected from Full Order Model 

(FOM) simulations, the POD basis 1 2{ , ,... }N=Φ     can be obtained by solving the eigenvalue problem 

given by CΦ = ΛC , where C  is the autocorrelation matrix defined as 1 TM= C YY  [3,4]. In the latter 

formula N MR Y  denotes the snapshots represented in matrix form. Employing the determined POD 

basis, the state variable can be expressed in a truncated form as K Ky Φ c , where NK   is an 

approximation order, N K

K R Φ   is a matrix composed of the first K columns of the matrix Φ , whereas 

Kc  are time-dependent coefficients of the POD modes. 

Since the FOM is constructed by applying the method of lines for the discretization of the original PDE 

problem, it can be written in the following matrix form of N ordinary differential equations (ODEs): 

( )
d

dt
= +y Ay F y ,   inityy =)0(  (4) 

Introduction of the truncated state variable in Eq. (4) followed by the projection of the resulting system 

onto the POD basis yields the following ROM: 
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The computational burden resulting from the need of evaluating of the non-linear term ( )K KF Φ c  in the 

original N-dimensional space can be further reduced by applying DEIM [5]. This method involves the 

determination of an additional POD basis from the snapshots of a nonlinear expression, denoted here by 

1 2{ , ,... }N=Ψ    , with evaluation of that expression only at optimally selected grid points, the so-

called interpolation points, collected within matrix P. Application of the DEIM technique described in 

detail in [5] yields the following final set of ODEs: 
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where N J

J R Ψ  and ,N JR J N P  

Usually, the snapshots employed for the determination of the POD basis, both from the snapshots of the 

state variable and of the nonlinear term, are collected at uniform time-sampling rate. Here, in order to 

increase the amount of information contained in a given number of POD modes, the procedure based on 

the so-called k-means clustering is employed [4]. Namely, the solution profiles are first grouped into 

clusters and then the POD modes are determined from the centroids of the clusters. More precisely, the 

k-means algorithm groups together subsets of 'nearby' solutions, based on a mutual distance, in this case 

defined as a squared Euclidean distance. 

4 Results and discussion 

The parameter set chosen for the simulation is the following: Le = 0.233, ϕ2 = 70000, β = 4.287 and 

[11.5,14]  . All of the time series and solution diagrams reported within this study refer to a point of 

the spatial domain marked with the red dot in Fig. 1a. Prior to the application of POD-Galërkin, the 

problem is resolved using the FOM, derived here by finite difference approximation of the spatial 

derivatives at coordinate nodes uniformly distributed along x and y with Δx = Δy = 0.01, yielding a mesh 

of 104 nodes. This results in the transformation of the infinite dimensional model consisting of 2 PDEs 

into a large system of 2·104 ODEs. The system of ODEs was then integrated using the variable time step 

solver ode15s of MATLAB in the time interval [0, 5]t  , and the solution was sampled with a uniform 

timestep equal to Δt = 2·10-4, resulting in 25001 snapshots. Figure 1b shows the solution diagram for 

dimensionless temperature and concentration, obtained using the FOM upon varying the parameter γ. 

 

 

 

Figure 1. Geometric representation of the problem with the relevant boundary conditions (a); and solution diagram 

obtained with the FOM by varying the parameter γ (b). In (b) solid lines, dots and squares denote, respectively, 

steady-state solution, maxima and minima of period-1, and maxima and minima of period-2 solutions. 

 b) a) 
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Table 1: Computational times and errors in the approximation of the dimensionless temperature for various values 

of γ. POD and POD-DEIM constructed using the k-means clustering algorithm on two FOM sets of snapshots 

collected at γ = 12.6 and γ = 13.  

 γ = 12.6 γ = 12.85 γ = 13 

CPU time error CPU time error CPU time error 

FOM 1.10·104 - 1.04·104  - 6.97·103  - 

POD 559.31 1.98·10-4 503.84 5.88·10-4 479.99 1.64·10-4 

POD-DEIM 10.83 2.03·10-4 9.53 1.49·10-4 10.59 1.45·10-4 

 

 

The solutions can be classified in steady-state and oscillatory solutions. Three bifurcation points are 

shown, one at γ = 11.95 where the first oscillatory solution is found indicating a Hopf bifurcation point. 

Then for γ = 12.85 a period-2 oscillation is detected, and finally at γ = 13.5 the system returns back to 

steady-state. Chaos is hypothesized to occur in a narrow window around γ = 12.85 but has not been 

detected. 

Two objectives were addressed in this study. The first one was to achieve a substantial reduction in the 

computational time while maintaining a high level of accuracy of the ROM, i.e. the aim was to build a 

ROM capable of accurately predicting the behavior of the system. For this scope, the classical 

POD-Galërkin technique has been first applied using K = 200 modes for the approximation of the state 

variables. The computational cost of model simulation has been reduced by two orders of magnitude as 

it can be seen in Table 1; further speed up has been achieved using, in addition, the DEIM algorithm, to 

address the bottleneck operation of evaluating the nonlinear term in the 10000 points of the FOM domain.  

The POD-DEIM constructed using again K = 200 POD modes, and J = 500 interpolation nodes within 

the DEIM procedure, resulted to be up to 1020 times faster than the FOM, and up to 55 times faster than 

the reduced model built with the classical POD approach.  

Attention has also been given to snapshot selection strategies by performing tests with and without the 

k-means clustering algorithm. To find the most suitable dataset for the construction of reduced models, 

two sampling strategies were compared. In the first strategy, all snapshots obtained from the FOM 

solution with γ = 13 were utilized; in the second one, a set of 2000 centroids of clusters determined using 

the k-means clustering algorithm applied to a mix of FOM solutions obtained for γ = 13 and γ = 12.6 

were used to build POD basis. These two values of γ correspond to the neighborhood of the onset of the 

period doubling bifurcation cascade (γ = 12.85) where chaotic behavior of the system is hypothesized. 

Two things can be noted in Table 1, where the error of the approximation of the ROM determined using 

the second strategy is reported. Firstly, the error for POD-DEIM is roughly the same as the error of the 

standard POD. Moreover, for various values of γ, the error remains of the same order of magnitude, 

confirming the global character of both POD and POD-DEIM derived bases.  

Figure 2 shows the set of DEIM interpolation points obtained using two snapshot selection strategies, 

plotted on a contour diagram showing the value of the nonlinear term in the energy balance at t = 0.34. 

This instant has been chosen to underline the differences between the two results. It is quite evident that, 

when the interpolation nodes are determined based on the snapshots coming only from a single FOM 

solution (Fig. 2a), the interpolation nodes are concentrated in specific regions of the domain. On the 

other hand, when the DEIM points are determined based on clustered snapshots coming from the 

combination of two different FOM solutions, they spread more uniformly over the domain (Fig. 2b). 
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Figure 2. DEIM interpolation nodes determined from all nonlinear term snapshots obtained for γ = 13 (a), and from 

a set of 2000 snapshots extracted by k-means clustering algorithm run on FOM solutions obtained for γ = 13 and 

γ = 12.6 (b). The frames in figure are taken at t = 0.34 AUT (arbitrary units of time). 

Figure 3a shows the time series of temperature and concentration calculated using FOM and POD-DEIM 

(K = 200, J = 500) determined with the use of k-means clustering with 2000 centroids. The solutions 

obtained using both methods practically overlap, confirming the very high accuracy of the ROM. Figure 

3b reports the solution diagram calculated using POD-DEIM. It appears that the reduced model predicts 

the bifurcations points and maxima and minima of oscillatory solutions, just as the FOM (Fig. 1b) except 

for the bifurcation point at γ = 11.95, as the first oscillatory solution predicted by the POD-DEIM model 

is observed at γ = 12.15. 

Finally, Fig. 4 reports the temperature solutions obtained from FOM and from POD-DEIM, in bi-

dimensional representation and with reference to three different values of time. 

 

  

Figure 3: Comparison of temperature and concentration obtained using FOM (solid line) and POD-DEIM (dashed 

lines) for different values of γ (a), and solution diagram obtained using POD-DEIM upon varying γ (b). In (b) solid 

lines, dots and squares denote, respectively, steady-state solution, maxima and minima of period-1, and maxima 

and minima of period-2 solutions.  

 

b) a) 

b) a) 
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Figure 4: Comparison of temperature solutions for γ =12.6 obtained from FOM (first row) and POD-DEIM based 

ROM (second row) at three different time instants: t = 1.26 (a) and (d), t = 1.3198 (b) and (e), t = 1.36 (c) and (f). 

5 Conclusions 

In this study a bi-dimensional model of a reaction-diffusion system has been solved. The solution 

diagram of the FOM has been reported. A POD-DEIM model has been constructed to reproduce the 

FOM solutions with high accuracy and much lower computational cost. The influence of two different 

sampling strategies have been investigated which resulted in a different distribution of DEIM 

interpolation nodes inside the analyzed domain. The innovative approach based on k-means clustering 

has allowed the construction of a global basis for the reproduction of the FOM solution diagram. The 

further adoption of DEIM algorithm in combination with k-means clustering not only reduced up to 

1020 times the computational time for the calculation of one solution, but also reproduced all of the 

bifurcation points found with the FOM, thus demonstrating quantitative and qualitative agreement. 
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