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1 Introduction 

Recently, utilization of detonation in aerospace propulsion devices has become increasingly active as a 
research topic [1–4]. Upon design of those devices, it is essentially important to predict detonation 
phenomena, such as the detonation limit, the deflagration-to-detonation transition distance, the critical 
energy for the direct initiation, and the critical diameter for the diffraction. However, fully theoretical 
prediction is still challenging mainly because of complexity due to essentially time-dependent, three-
dimensional nature of the detonation wave [5]. 

Therefore, characteristic length scales of the detonation wave are often incorporated to utilize some 
semi-empirical correlations of the detonation dynamics. Although detonation cell width, which is one 
of the most accepted characteristic length scales, has been measured for various fuel-oxidizer 
premixtures at various temperatures, pressures, and mixing ratios [6], a wide range of conditions 
required for the designing are not necessarily covered. Therefore, some researchers are attempting to 
organize the cell width as a function of thermodynamic and chemical properties [7–10]. Nevertheless, 
it is still not clear what are suitable properties to predict the cell width. 

In this study, we made another attempt to predict a characteristic length scale. In particular, reflection 
point distance, which is acknowledged as a characteristic length scale relevant to the detonation 
diffraction [11,12], was utilized as the target of the prediction. A data-driven approach was taken for the 
prediction; namely, functional relationship between the reflection point distance and its potential 
explanatory variables was acquired statistically based on a lot of experimental data. Artificial neural 
network (ANN) was particularly employed as the learning model due to its high approximation 
capability [13]. Objectives are to investigate what the learning process should be and examine the 
prediction capability of the obtained. Brief overview of this study is described below. 

 

 



Kawasaki A.                                                                        Data-driven Modeling of Reflection Point Distance 

28th ICDERS – June 19-24, 2022 – Napoli 2 

2 Method of Machine Learning 

2.1  Dataset 

The dataset utilized in this study, part of which is published in References [11] and [14], is shown in 
Table 1. The reflection point distances were obtained in high-speed imaging experiments of detonation 
diffraction processes performed by the authors for some fuel-oxidizer premixtures (Fig. 1). At the room 
temperature, the initial pressure of the mixture was changed successively. 

 

Table 1: Dataset (f: equivalence ratio, Xdil: volumetric fraction of diluent) 

# Fuel Oxidizer Diluent f Xdil, % # of data 
1 H2 O2 - 0.55–1.30 - 179 
2 C2H2 O2 - 0.55–1.30 - 364 
3 C2H2 O2 Ar 1.00 50 281 
4 C2H2 O2 Ar 1.00 80 15 
5 C2H2 O2 N2 1.00 50 6 
6 C2H4 O2 - 0.55–1.60 - 122 
7 C2H4 O2 Ar 1.00 50 20 
8 C2H4 O2 Ar 1.00 67 47 
9 C2H4 O2 Ar 1.00 75 54 

10 C2H6 O2 - 0.55–1.39 - 96 
11 C2H6 N2O - 1.00 - 22 

 

  
Figure 1: Conceptual definition of the 
reflection point distance. 

Figure 2: Schematic of a totally coupled multi-layer 
neural network. 

 

2.2 Learning Model 

A schematic of the ANN trained in this study is shown in Fig. 2. The network is the totally coupled type 
with a layered structure. That is, each neuron (node) j in an hidden layer i takes the value obtained by 
the affine transformation of the linear combination of the output value vj'(i-1) of node j’ in the upstream 
layer i-1 as the input, and outputs the value vj(i) obtained through an activation function σ(∙):R→R. 
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where w(j',j)(i) is the weight of the linear combination, bj(i) is the bias of the affine transformation, and R 
is the set of real numbers. For the activation function, the rectified linear function (ReLU)  
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𝜎(𝑧) = /0𝑧					
(𝑧 < 0)
(𝑧 ≥ 0) 

was used.  

2.3 Learning Algorithm 

The ANN described above can be interpreted as a function 𝑦 = 𝑓(𝒙; 𝜽), that maps an explanatory variable 
(vector) x to an objective variable y under a parameter (vector) θ, which consist of the weights w(j',j)(i) 
and the biases bj(i). For this ANN, if we take a sample (xtrain,k, ytrain,k) from the training dataset, we get a 
prediction of the objective variable, ypred,k, under the explanatory variables xtrain,k and a certain θ. By 
comparing the predicted data ypred,k, with the training data ytrain,k, the loss function  

Loss$𝑦-./0,1 , 𝑦2.345,1 , 𝜽& =
1
2 ?𝑦-./0,1 − 𝑦2.345,1?6

6 +
1
2𝛼

‖𝒘‖66 

can be calculated. Here, ǁ∙ǁ2 is the L2 norm, α is the L2 regularization parameter, and w is a vector 
consisting of the weights. The second term on the right-hand side is called the regularization term, which 
has the effect of preventing overfitting of the ANN. Training of the ANN is an optimization problem to 
minimize the loss function by updating θ. In this study, the stochastic gradient descent (SGD) method 
was utilized for the updating of θ. To implement this algorithm, we used the scikit-learn [15] programing 
library. 

2.4 Explanatory Variables 

In the supervised machine learning, the inputs to the learning model are often called explanatory 
variables (or features), and the outputs are called objective variables. If initial temperature, pressure, and 
composition of a mixture are given, the chemical equilibrium calculation can be used to calculate the 
initial (or pre-shock), von-Neumann (or post-shock), and Chapman-Jouguet (CJ) states. In the training 
of the ANN, these variables, which were calculated using the NASA CEA code [16], were employed as 
features. As chemical-kinetics parameters, activation energy, induction length, and reaction length which 
were computed by using the Cantera [17] and Shock and Detonation Toolbox [18] libraries with the 
GRI-Mech 3.0 [19] chemical-kinetics mechanism, were also employed as features. In this way, the 
chemical species, which are not numerical but categorical variables, were characterized by numerical 
variables.  

Since strong correlations between features can degrade the accountability of the learned model, features 
strongly correlate with other features were excluded. The strength of correlation was measured based on 
Spearman's rank-correlation coefficient, and threshold was set to 0.9. As a result,  

𝒙 = $𝑇7, 𝑝7, 𝜌7, ℎ7, 𝑔7, 𝑀J7, 𝛾7, 𝑇89, 𝑢89, 𝑎89, 𝑃𝑟89, 𝑇:;, 𝑀J:;, 𝑃𝑟:;, 𝐷0/2, 𝑀0/2, 𝐸3, Δ4, Δ.&
<

 
were selected as the input parameters of the model. Here, T is temperature, p is pressure, r is specific 
enthalpy, u is specific internal energy, h is specific enthalpy, g is specific Gibbs free energy, 𝑀J  is 
molecular mass, a is speed of sound, g is specific heat ratio, Pr is Prandtl number, Ddet is the CJ 
detonation velocity, Mdet is the CJ detonation Mach number, Ea is the activation energy, Di is the 
induction length, and Dr is the reaction length. The subscripts are as follows: 0 is the initial (pre-shock) 
state, vN is the von Neumann (post-shock) state, and CJ is the CJ state. 

3 Results and Discussion 

3.1 Model Optimization Results 

The number of the layers Nl,h, the number of the nodes par layer Nn,h, and the regularization parameter 
α were optimized by cross validation. As a result, Nl,h, Nn,h, and α were set to 6, 300, and 10-2, respectively. 
The coefficient of determination 
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was used as the scoring parameter to evaluate the model performance. A value closer to unity means the 
smaller difference between the predicted values by the trained model and the experimental data for 
validation. As a result of the optimization, a mean R2 value of 0.960 was attained. In the following, we 
will only discuss the results for the optimized model. 

3.2 Regression Performance 

Figure 3 shows relationship between each output (predicted reflection point distance) by the trained 
model f( ∙ ; qtrained) when the corresponding feature vector xk used in the training is input 

𝒍𝐫,𝐩𝐫𝐞𝐝,𝒌 = 𝒚𝐩𝐫𝐞𝐝,𝒌 = 𝒇(𝒙𝒌; 𝜽𝐭𝐫𝐚𝐢𝐧𝐞𝐝) 

and the corresponding training datum (experimental reflection point distance) lr,exp,k = ytrain,k. The red line 
in the figure shows the line of exact agreement between the model predictions and experimental values. 
As shown in the figure, the predictions of the trained model are in good agreement with the experimental 
data. This indicates that the trained model was well fitted (regressed) to the training data. 

 

 

 

 
Figure 3: Relationship between experimental data, 
lr,exp, and model predictions, lr,pred, for the training data. 

Figure 4: Model dependence on initial 
pressure. 

  
Figure 5: Model dependence on equivalence 
ratio.  

Figure 6: Model dependence on dilution ratio. 
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The regression performance is further examined for some reaction systems. Figures 4–6 show typical 
behavior of the trained model when the initial pressure, equivalence ratio, and dilution ratio were 
changed. As shown in Figure 4, the trained model well acquired appropriate behavior for the change in 
the initial pressure. As shown in Figures 5 and 6, the trained model also well acquired appropriate 
behavior for the equivalence ratio and dilution ratio of the reactants. 

3.3 Prediction Performance 

Figure 7 shows relationship between each predicted reflection point distance by the trained model  
𝒍𝐫,𝐩𝐫𝐞𝐝,𝒌! = 𝐲𝐩𝐫𝐞𝐝,𝒌! = 𝒇(𝒙𝒌!; 𝜽𝐭𝐫𝐚𝐢𝐧𝐞𝐝) 

and the corresponding experimental value lr,exp,k' = ytrain,k' for the test data, which are not used for the 
training of the model and extracted at random from Table 1. The red line in the figure shows the line of 
exact agreement between the model predictions and experimental data. As shown in the figure, the 
predictions of the trained model are in good agreement with the experimental values even for the data 
that are not used for the training. This suggests that the trained model has good prediction capability for 
unknown experimental data; that is, the model is well generalized. 

 

 

 

Figure 7: Relationship between experimental data, lr,exp, 
and model predictions, lr,pred, for the test data.  

4 Conclusions 

In this study, a predictive model of the reflection point distance, which is a characteristic length scale 
relevant to detonation diffraction, was constructed and evaluated based on an existing experimental 
dataset for familiar gaseous fuels, including hydrogen (H2), acetylene (C2H2), ethylene (C2H4), and 
ethane (C2H6). The model was a statistical model obtained by a data-driven approach utilizing methods 
of machine learning, in which the reflection point distance was a function of thermodynamic and 
chemical parameters of fuel-oxidizer mixtures. A multilayer, totally coupled neural network was 
particularly chosen as the (abstract) learning model. As a result, we obtained the following conclusions. 

• The obtained model exhibits a good regression performance. That is, the model well acquired 
typical dependencies of the reflection point distance on the initial pressure, equivalence ratio, 
and dilution ratio. 

• The obtained model also exhibits a good prediction performance. That is, the model well 
predicted reflection point distances unknown for the model. This suggests that the model has 
been well generalized. 
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