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1 Introduction

Model reduction for chemical kinetics based on the concept of low-dimensional manifolds represents
a very attractive methodology to cope with the problem of high dimensionality in a very general man-
ner [1]. Many different method exist e.g., the Intrinsic Low-Dimensional Manifolds (ILDM) [2], the
Flamelet Prolongation of ILDM (FPI) [3, 4], the flamelet model [5], the Reaction-Diffusion Manifolds
(REDIM) [6] and the Flamelet Generated Manifold (FGM) [7]. Although these methods are based on
low-dimensional manifolds they differ in the way manifolds are identified and implemented.

In this work, we focus on the Reaction-Diffusion Manifolds (REDIMs) method [6]. In the past, much
effort has been made to validate, improve and extend the methodology (see e.g. [8–11]). One of the cru-
cial issues with the implementation concerns a gradient estimate, which is required in the generation of
the REDIM [6]. These estimates are very important because they describe the influence of the diffusion
/ transport and related to the strength of the diffusion processes in particular system considered. Some
empirical investigations on the dependence of the manifolds on the gradient estimate can be found e.g.,
in [6, 8, 12]. It has been shown numerically that the gradient estimate becomes less and less important
with increasing dimension of the REDIM reduced chemistry. Despite of these numerical studies one
would still like to have a general way to identify and quantify the influence / importance of the system
gradient estimates for the model reduction on the manifold based reduced chemistry (e.g. REDIM and
flamelet based model such as FGM [13]). Additionally, the question of sensitivity of the slow manifold
with respect to elementary reactions can be crucial for further mechanism development. Knowledge
about reactions that describe and influence the slow manifold can be used in mechanism improvement
and it can also contribute to a better understanding of chemical kinetics.

To answer these questions, the equations for the sensitivity of the low-dimensional manifolds on the
system gradient estimate and elementary reaction rates are derived and implemented. Note that the
sensitivities of the slow manifolds with respect to the perturbations have been investigated before, for
instance in [14], where a sensitivity analysis of the slow manifolds with respect to the reaction rate co-
efficients was formulated in the context of the Intrinsic Low-Dimensional Manifolds (ILDM) [2]. Now,
it is also modified and implemented in the REDIM approach. Additionally, the influence of the system
gradients on the simplified chemistry is studied by the sensitivity to the system gradient estimates. It is
illustrated and verified for a diluted hydrogen / air diffusion flame.
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2 Mathematical model

A general reaction/convection/transport system will be considered. The chemical source term and the
matrix of transport coefficients are only functions of the thermo-kinetic state vector. The thermo-kinetic
state vector ψ is an (n = ns + 2)-dimensional vector represented by e.g. the specific enthalpy h, the
pressure p and the specific mole numbers φi (φi = wi/Mi, where wi are the mass fractions and Mi the
molar masses of the ns chemical species.

ψ = (h, p, φ1, . . . , φns)
T , (1)

In a reacting flow this thermokinetic state is a function of both time and space: ψ = ψ(t, ~r), with t
the time and ~r the vector of spatial coordinates. To simplify notation we write the evolution equation in
vector form according to

ρ
∂ψ

∂t
= G(ψ)− ρv gradψ + div (D gradψ) , ψ = ψ(~r, t), ~r ∈ Ω, t ∈ [0,∞] , (2)

where ~v denotes the flow velocity vector, G(ψ) the n-dimensional vector of chemical source terms,
D the n × n-dimensional matrix of detailed transport coefficients (including diffusion, heat conduc-
tion, thermal diffusion, etc.). The equation system is closed by specifying boundary condition on the
boundary ∂Ω of Ω.

2.1 Low-dimensional manifolds and Sensitivity

The accessed thermo-kinetic state space for both laminar and turbulent reacting flows is typically close
to low-dimensional manifolds [2, 15]. This can be expressed as:

M =
{
ψ = ψ(θ(~r, t)), Rm → Rns+2

}
, (3)

with θ as the m-dimensional reduced coordinate vector. In the reacting flow calculation using manifold
methods, the solution of Eq. (2) is replaced by the solution of an evolution equation for θ(~r, t), which
is obtained by projecting the governing equation system onto the manifold. The tangent space of the
manifold is given in matrix notation by ψθ and denotes the (n × m)-dimensional matrix of partial
derivaties of ψ with respect to θ as (ψθ)ij = ∂ψi/∂θj . The vector of sensitivities s = (s1, s2, . . . , sn)T

with respect to a parameter (s = ψp) or the matrix of sensitivities with respect to a parameter vector p
defines how the manifold changes when the parameters are changed.

2.2 Sensitivity of REDIMs

In the REDIM method [6] an evolution equation is solved in order to identify the low-dimensional
manifolds (see e.g., [16] for more details and notation)

ρ
∂ψ

∂t
= P (G (ψ) + Ξ(ψ,ψθ,ψθθ)) , (4)

where

• For the case of detailed transport,

Ξ(ψ,ψθ,ψθθ) = (Dψθχ)θ χ, (5)
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Figure 1: Maximal values (in magnitude) of sensitivity coefficients of H (left) and OH (right) radicals of
the 2D REDIM with respect to the elementary reaction rates. The 10 most sensitive reactions are shown
for each radical. List of all reactions is provided in the legends.

• For a simplified transport withD = dI and I being the identity matrix, the term Ξ(ψ,ψθ,ψθθ) =
d(ψθχ)θχ can be reduced to Ξ(ψ,ψθ,ψθθ) = d(ψθθχ)χ,

with χ = ∇θ as the gradient estimate. This equation is integrated for t → ∞ and the steady solution
yields the REDIM. However, for the formulation of the sensitivity equation it is advantageous to base it
on the original invariance equation for the steady state at t→∞ (see e.g., [6, 16]), which is given by

Z [G (ψ) + Ξ(ψ,ψθ,ψθθ)] = 0, (6)

where Z = SψTθ⊥, ψθ⊥ is the orthogonal complement of ψθ and S is an arbitrary (n −m × n −m)-
dimensional (regular) scaling matrix (see, e.g. [17] for suitable choices).

2.3 Sensitivity equations

Starting from the invariance equation (6) simple calculus leads to the equation for the sensitivity s = ∂ψ
∂p

dZ

dp
[G+ Ξ] + Z

[dG

dp
+

dΞ

dp

]
= 0. (7)

Most terms in Eq. (7) have been discussed in [16], therefore, we shall only summarize the results, and
we shall adopt a general notation for matrix C⊥ noting that it can also be given as C⊥ = ψθ⊥. The final
general equations system for the sensitivity then reads

0 =− Zsθ(CTψθ)−1CT [G+ (Dψθχ)θ χ]

+Z
[
Gψs+Gp + ((Dψs)ψθχ)θ χ+ (Dsθχ)θ χ

]
.

(8)

Although the general sensitivity equation (8) can be integrated numerically, it is useful to restrict to a
further simplified system. Because in this study we are interested in the sensitivity with respect to a
change of the gradient estimate magnitude, e.g., p : χ∗(p) = χ(1 + p) and the kinetics parameters, but
not in the sensitivity on the applied transport model the following simplifying assumptions (1) D = dI ,
(2) d depends only weakly on the state vector (dψs ≈ 0) and (3) C is a constant matrix, are additionally
applied.
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Figure 2: Sensitivity coefficients of H radical with respect to first (forward on the left) and second
(backward on the right) elementary reactions, computed on 2D REDIM (shown by the mesh with H2O2

contours) and on 1D REDIMs - red lines, shown as 2D functions of H2O and N2 specific mole numbers.

3 Results

The 1D and 2D REDIMs equations are integrated and constructed for a counter-flow diffusion flame
configuration of a 50 : 50 mixture of H2 : N2 and air at a standard ambient pressure and temperature
(T0 = 298 K and p0 = 1 bar). 1D REDIMs are constructed for different strain rates and results are
shown in Figs. 2 and 3 by red lines. The following sensitivity matrices are computed for a number of
nr elementary reactions (Aj) and perturbation parameter p of the gradient estimate (i = 1, ..., ns; j =
1, .., nr)

sri,j =
∂ψi
∂Aj

, sgi =
∂ψi
∂p

.

Figure 1 summarizes the results of sensitivity study with respect to the rate coefficients of the elementary
reactions, where forward and backward reactions are treated separately. Maximal (in absolute values)
sensitivities of H and OH radicals with respect to the elementary reaction rates computed on the 2D
REDIM are illustrated. The most important reactions for OH and H radicals are identified (only the 10
most important reactions are shown) depending on the local values of N2 and H2O. Figure 2 shows
actual values of sensitivity of H with respect to reaction - H + O2 = O + OH. The comparison shows
that the 2D REDIM is less sensitive to the rate of this elementary reaction. Moreover, one can notice
that for 1D REDIMs for different strain rates the larger the strain rate the higher the sensitivity.

Figures 3 show sensitivity vectors with respect to the gradient estimates. On the left a 2D projection
is shown of the sensitivity vectors of (N2,H2O) projected onto 2D plane of (N2,H2O). Red curves
show different 1D REDIMs, while red vectors (arrows) show the sensitivity of (N2,H2O) respectively.
One can notice that the sensitivity grows with the increase of the strain rate. On the right figure 3D
projections of sensitivity vectors (N2,H2O,H) are shown both along the 2D REDIM (mesh with H2O2

contours) denoted by cyan arrows and along 1D REDIMs presented by red lines and depicted by red
arrows. It has to be noted that only after the 2D REDIM sensitivity vectors were amplified by a factor
of 103 they show up within the same order of magnitude as the red arrows. This means the 2D manifold
is by far less sensitive to the gradient estimates as expected. Additionally, one can easily see that the
sensitivity vectors of 1D REDIMs point in the direction of the tangent space of the 2D REDIM.
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Figure 3: Sensitivity vectors projected onto 2D plane of specific mole numbers with 1D REDIMs (on
the left) and 3D projections (right). 2D REDIM is shown by the mesh with H2O2 contours, while 1D
REDIMs shown by red lines.

4 Conclusions

In this study the sensitivity analysis for REDIMs with respect to elementary reaction rate coefficients and
gradient estimates was outlined and verified. The method to calculate the sensitivity was implemented in
the REDIM evolution equation and integrated in a coupled way such that the converged REDIM solution
provides the sensitivity automatically. The method was shown for 1D and 2D REDIMs, which were
constructed for diluted hydrogen and air counter-flow diffusion flame. Several important observations
were made, namely,

• the sensitivity of the slow manifold can be computed in a very generic manner providing informa-
tion on the manifold sensitivity to the system parameters and gradient estimates;

• the sensitivity to the elementary reaction rates can be studied and used similarly as for the detailed
solution such that crucial reactions which influence the form and the structure of the manifold can
be singled out;

• with the increase of the manifold dimension the sensitivity with respect to the gradient estimates
is reduced significantly, moreover, the sensitivity vectors for the gradients estimates of less di-
mensional manifolds (1D in this case) belong or remains close to the tangent space of manifolds
of higher dimension (2D). The latter is a natural consequence of the hierarchical structure of the
REDIMs.
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