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1 Introduction

In most reactive gases of practical interest, the rates of chemical reactions behind the lead shock front of
detonation waves are exponentially dependent on temperature. When the lead front is exposed to sudden
losses, the reaction process is often quenched, and the lead shock evolves as an inert shock. An example
is the sudden diffraction of detonation waves at a corner. The reaction zone decouples from the lateral
shock motion [1–3]. A similar situation appears in galloping detonations in narrow tubes [4]. Following
a reformation of a detonation wave, the lateral losses to the tube walls do not permit the reaction zone
to remain coupled. In the past, the dynamics of lead shocks have been modeled using point bast theory
in a phenomenological manner, yielding relative success. At the other extreme, perturbations to the
ZND structure to account for weak non-steady effects and losses also fail in the systems with sensitive
chemistry where reactions truly decouple from the shock motion. The present paper discusses a very
simple model for these transient problems using the shock change equations. These permit the dynamics
of the lead shock to be determined once a partial derivative (or combination of them) behind the lead
shock can be prescribed or modeled.

Diffracting detonation waves are shown to be well approximated by the quasi-steady rear piston support
behind the lead shock, requiring ∂u/∂t � Ḋw. This leads to very simple analytical formulae for the
shock dynamics. Galloping detonation waves with nearly instantaneous energy release followed by
inert decay phases require ∂u/∂x ≈ constant. This also leads to very simple analytical formulae for
the shock dynamics. The present communication addresses these two problems, and reports on recent
progress, summarizing and expanding on our recent publications on the subject [3, 5, 6].

2 Link between partial derivatives and the shock dynamics

Following the procedure of Fickett and Davis [7], Radulescu formulated the shock-change equations for
any partial derivative of interest for a general fluid [6]. Here we focus on the expressions assuming a
strong shock in a perfect gas, which are sufficiently simple and useful in practice.

We start with the Euler equations written for a stream-tube with varying area A(x); see Fig. 1. These
describe the general motion of a compressible inert fluid.
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Figure 1: Schematic of quasi-1D flow in a tube with enlarging cross-section.

where x and t are the coordinate along the stream tube and time, D/Dt = ∂/∂t + u∂/∂x is the rate
of change along the motion of a fluid particle. The rate of strain of a fluid element in the transverse
direction is σ̇A = DlnA

Dt = ud lnA/dx = uκ. This also is the product of the shock curvature and the
flow speed, since κ = d lnA/dx.

These partial differential equations (1) can be projected along the shock wave trajectory xw(t) such that
partial derivatives appearing in (1) can be expressed in terms of time derivatives taken along the path
xw(t). The speed of the observer being the shock speedDw = ẋw(t), convective derivatives taken along
the path xw(t) satisfy(
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If all variables appearing in (1) apply immediately behind the shock, the ratio (du/dt)w/(dp/dt)w =(
du
dp

)
H

becomes the variation of particle speed with pressure along the shock Hugoniot, the curve
marking the loci of possible post shock states. This is a property of the material’s equation of state. After
some manipulations, using the mass conservation across the shock wave ρ0(Dw − u0) = ρ(Dw − u)
and the definition of the sonic parameter η = 1 −

(
D−u
c

)2
, the desired shock-change equations can be

obtained for any two partial derivatives, for example:
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Expressions for other partial derivatives follow from (1). These shock change equations can be written in
terms of a single variable characterizing the shock, for example the shock speed, Mach number, pressure,
density, etc, since they are all linked through the Rankine-Hugoniot jump conditions. Choosing the
shock speed for example, we can write
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H

where (dp/dDw)H
is also a property of the shock Hugoniot. The right hand sides of all shock change equations listed can
be re-written in terms of the wave speed Dw, its rate of change Ḋw, shock Hugoniot properties and the
upstream state. For a strong shock in a perfect gas, with u0 = 0, the state behind the shock is given by
very simple Rankine-Hugoniot jump conditions:
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from which we readily obtain (
dp

dDw

)
H

=
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γ + 1
ρ0Dw (6)

Substituting (5) and (6) in (3) and (4), we obtain:
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Ḋw

Dw
− 4γDwκ

(γ + 1)2
(7)
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Expressions for other partial derivatives of interest can be easily obtained by substituting the last two
expressions in (1), yielding, for example:
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(9)

3 Detonation diffraction

The local dynamics of diffracting shocks resulting from the diffraction of detonations can be argued to
correspond to quasi-steady rear piston support [3], i.e.,

∂u

∂t
� Ḋw (10)

A simple evolution equation for the lead shock can thus be obtained from (9), by neglecting the LHS,
i.e.,

8Ḋw

γ + 1
+

4γD2
wκ

(γ + 1)2
= 0 (11)

This is an evolution equation for the shock dynamics of the formDw ∝ A−1/n, since it can be re-written
as:

D2
wκ

Ḋw

≡ d lnA/dx

d lnDw/dx
= −2γ + 1

γ
≡ −n (12)

This simple power law dependence can readily be incorporated in the geometric theory of surface evo-
lution of Whitham, known as Geometrical Shock Dynamics [8].

When the shock dynamics are of the form Dw ∝ A−1/n, the diffraction of a shock surface at a sharp
corner has an analytical solution in terms of n, given by equations (8.95) in Whitham [8]:
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where η is given by tan η =
√
n and θ is the angle of the unit normal to the shock surface with the

x-axis.

The prediction of shock shape evolution using (13) and (14), with n given from (12), was compared to
experiments and simulations of hydrogen/oxygen/argon detonations and found in excellent agreement.

28th ICDERS – June 19 - 24, 2022 – Napoli, Italy 3



Radulescu, M.I.P. Shock dynamics for quenched detonations

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

50 100 150 200 250

- 150

- 100

- 50

0

50 100 150 200 250

- 150

- 100

- 50

0

50 100 150 200 250

- 150

- 100

- 50

0

50 100 150 200 250

- 150

- 100

- 50

0
150 200 250

- 150

- 100

- 50

0

150 200 250

- 150

- 100

- 50

0
150 200 250

- 150

- 100

- 50

0

150 200 250

- 150

- 100

- 50

0

Figure 2: Sequential Schlieren images a) to h) separated by 12.9 µs of detonation diffraction in
2H2+O2+2Ar mixture at T0 = 295K and p0 = 17kPa, adapted from [3]; the distance between the
bottom and top walls is 200 mm; overlaid in green is the shock shape predicted with the weakly sup-
ported shock assumption.
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An example is shown in Fig. xx for a critically diffracting detonation wave. Very good prediction of the
shock shape evolution is apparent, until the re-amplification of new detonation kernels. The access to
an analytical solution for the shock dynamics permitted us to formulate simple detonation transmission
criteria [3].

Experiments in other reactive mixtures are under way and the model prediction capabilitity for these
will be discussed at the conference.

4 Galloping detonations

Galloping detonations in narrow tubes consist in the quasi-periodic re-amplification of the detonation
front through rapid DDT, followed by a period of decay of the lead shock [4]. As the limits are ap-
proached, the decay phase becomes longer than the re-amplification phase. In a recent study, an extreme
model was considered in which the re-amplification phase is infinitely faster than the long decay phase.
Under these conditions, energy is released periodically in the non-reacted gas accumulated behind the
lead shock, as shown schematically in Fig. 3. Since the infinitely fast energy release corresponds to an
energy addition at constant volume, the velocity and pressure gradients behind the shock after re-ignition
are the same as those before re-ignition. It is not unreasonable to expect that the limit cycle oscillation
will achieve constant gradients throughout the cycle, since they are constrained by their values at the
start and end of each cycle, which are the same. This was empirically observed in our numerical calcu-
lations [5].

For 1D flows, the constancy of flow gradient ∂u/∂x behind the lead shock, through the shock change
equation (7), signifies:

∂u

∂x
= − 6

γ + 1

Ḋw

Dw
≡ b (15)

where b is a constant. This integrates to

Dw = Dw0 exp

(
−γ + 1

6
bt

)
(16)

and D ∝ −x. This exponential decay in time is in very good agreement with experimental observations
[4] and numerical simulations [5]. Further progress on the galloping problem will be communicated at
the conference.
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[3] M. I. Radulescu, R. Mével, Q. Xiao, and S. Gallier, “On the self-similarity of diffracting gaseous
detonations and the critical channel width problem,” Physics of Fluids, vol. 33, no. 6, p. 066106,
2021.

28th ICDERS – June 19 - 24, 2022 – Napoli, Italy 5



Radulescu, M.I.P. Shock dynamics for quenched detonations

[4] S. Jackson, B. J. Lee, and J. E. Shepherd, “Detonation mode and frequency analysis under high loss
conditions for stoichiometric propane-oxygen,” Combustion and Flame, vol. 167, pp. 24–38, 2016.

[5] M. I. Radulescu and J. E. Shepherd, “Dynamics of galloping detonations: inert hydrodynamics with
pulsed energy release,” in Bulletin of the American Physical Society, 68th Annual Meeting of the
APS Division of Fluid Dynamics, Boston, MA, 22 - 25 November 2015.

[6] M. I. Radulescu, “On the shock change equations,” Physics of Fluids, vol. 32, no. 5, p. 056106,
2020.

[7] W. Fickett and W. C. Davis, Detonation : theory and experiment. Mineola, N.Y.: Dover Publica-
tions, 2000.

[8] G. B. Whitham, Linear and nonlinear waves. New York: Wiley, 1974.

28th ICDERS – June 19 - 24, 2022 – Napoli, Italy 6


	Introduction
	Link between partial derivatives and the shock dynamics
	Detonation diffraction
	Galloping detonations

