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1 Introduction

High fidelity numerical simulations of high explosive (HE) detonation product afterburn are especially
challenging due to the extreme ranges of thermodynamic states and flow scales involved. Immediately
following detonation, the detonation product gases are at very high densities and pressures (e.g., 1 g/cc
and hundreds of thousands of atmospheres), and they rapidly expand to near-atmospheric pressure,
while mixing and burning with available oxygen. When modeling high-pressure detonation physics
(e.g., shock-to-detonation transition), it is common to use an equation of state (EOS) for the detonation
products that does not explicitly account for the chemical species that are present [1], e.g., the Jones-
Wilkins-Lee EOS [2]. With our emphasis on late-time mixing and afterburn, we desire a model which
includes detailed species information and allows finite-rate chemical transformations therein. For this
purpose we adopt the well known Becker-Kistiakowsky-Wilson (BKW) EOS [3], which is an empirical
real-gas EOS historically used for detonation performance calculations [4]. The BKW EOS is built upon
a multi-species ideal gas mixture, making it well-suited for coupling to a detailed finite rate chemical ki-
netics scheme to model afterburn combustion. In the sections below we detail important aspects of such
a model and show extensive verification tests conducted in the high-fidelity research hydrodynamics
code HyBurn developed at the University of Florida.

2 Real Gas Equation of State and Verification

The BKW EOS is an empirical real-gas EOS of the form [5]

pV = NRTZ , Z = 1 + x exp(βx) , x =
κN

V (T + θ)α

m∑
i=1

χiki , (1)

where p is the pressure, V is the volume, N is the number of moles, R is the universal gas constant, T
is the temperature, Z is the compressibility factor, m is the number of species, χi is the mole fraction
of species i, ki is the geometrical covolume of species i, and α, β, θ and κ are calibration constants. At
large volumes or high temperatures x becomes small and Z approaches unity, so that ideal gas behavior
is retained by the EOS. We use the General Limit Method [6] to compute properties of the real-gas
mixture through so-called departure functions. Due to space limitations and our emphasis on the finite
rate chemical kinetics formulation in the next section, we do not summarize the departure functions here
— see the Chemkin Real Gas manual by the late Bob Schmitt for an excellent summary [5].
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Table 1: Summary of constant states appearing in the solution of the Sod-like Riemann problem. The
“Left” and “Right” states form the initial conditions, and the “Star Left” and “Star Right” states (in the
nomenclature of Toro [7]) are those intermediate constant regions appearing for t > 0.

Region Left Star Left Star Right Right
p (GPa) 10 0.04544 0.04544 0.0001
ρ (g/cc) 1.500 0.1225 0.01060 0.001155
T (K) 2837 926.5 14739 300

u (mm/µs) 1.500 5.915 5.915 0
a (mm/µs) 4.616 0.7519 2.245 0.3483
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Figure 1: Exact and numerical solutions to Sod-like Riemann problem. Wave curves from TIGER used
to compute the exact solution in frame (a). Pressure and temperature profiles in frames (b) and (c),
respectively, after t = 9.5× 10−5 s for an initial interface location x = 0.33203125 m.

To verify our implementation of the BKW EOS in HyBurn, we made extensive comparisons with the
thermochemical equilibrium code TIGER developed by Sandia National Laboratories [4]. Point cal-
culations for a mixture of CO2 and O2 over a wide range of (V, T ) space encompassing regions with
significant real-gas effects showed identical results between HyBurn and TIGER for energy, entropy,
pressure, specific heat, Grüneisen parameter, sound speed, etc. To verify the EOS in the context of hy-
drodynamics, we again used TIGER to construct exact solutions to canonical 1-D Riemann problems,
with left and right states that are relevant to HE detonation products expanding into air. For a Sod-like [7]
Riemann problem, the chemical compositions are frozen, with χH2O = 0.3, χCO2 = 0.25, χN2 = 0.25,
χCH4 = 0.1, χH2 = 0.05 and χCO = 0.05 for the left state and χN2 = 0.79 and χO2 = 0.21 for the
right state. The left, right and contact states for the Riemann problem are summarized in table 1, and
a graphical solution to the Riemann problem using wave curves from TIGER is shown in frame (a) of
figure 1. In frames (b) and (c) of figure 1 we compare the exact solution to HyBurn results computed
using the HLLC Riemann solver with Einfeldt wave speed estimates, WENO5 reconstruction and a grid
with 1024 cells in the direction normal to the interface. The results of these and other verification tests
suggest the BKW EOS is implemented correctly and is properly integrated into the flow solver.

3 Finite Rate Chemical Kinetics Formulation

The elementary chemical reactions comprising a kinetics mechanism may be written as [8]
m∑
i=1

ν ′iMi

kf−−⇀↽−−
kr

m∑
i=1

ν ′′iMi , (2)

where m is the number of species Mi, ν ′i and ν ′′i are the stoichiometric coefficients, and kf and kr are
the forward and reverse reaction rate parameters, respectively. The net production rate for ideal gases is
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commonly modeled with the law of mass action as
dω

dt
= kf

m∏
i=1

c
ν′i
i − kr

m∏
i=1

c
ν′′i
i , (3)

where ci = Ni/V is the concentration of species Mi having Ni moles. The net production rate is zero
at equilibrium, thus giving the following relation between the forward and reverse rate parameters

kf
kr

=
m∏
i=1

c
ν′′i −ν′i
i =

m∏
i=1

c∆νi
i , (4)

where ∆νi = ν ′′i − ν ′i is the net stoichiometric coefficient for species Mi. When modeling non-ideal
gases or mixtures, it may be more appropriate to evaluate kinetics rate expressions with activity concen-
trations instead of the standard concentrations appearing above [9]. Denoting the activity concentration
ai = γici, with γi being the activity coefficient (discussed shortly), the net production rate is taken as

dω

dt
= kf

m∏
i=1

a
ν′i
i − kr

m∏
i=1

a
ν′′i
i , (5)

and at equilibrium, we have
kf
kr

=

m∏
i=1

a∆νi
i . (6)

As we will see shortly, (6) is only a function of temperature and the stoichiometry of the reaction.

To ensure the finite rate kinetics scheme converges to the correct equilibrium, the reverse reaction rate
parameter kr is computed using kf and the equilibrium constant on the right-hand-side of (6). The
equilibrium constant is derived from the equation for chemical equilibrium

∑m
i=1 ∆νiµi = 0, where µi

is the chemical potential of species Mi. For real gases, the chemical potential is often written as [10]

µi = µ0
i +RT log

(
fi
p0

)
,

fi/pi → 1 , as p→ 0 ,

 (7)

where fi is the fugacity of species Mi, p0 is unit pressure, µ0
i = µ0

i (T ) is the chemical potential of the
pure species Mi at unit fugacity and is only a function of temperature, p is the pressure and pi = χip is
the partial pressure of species Mi. Substituting in the fugacity coefficient φi = fi/pi and (1), we get

µi = µ0
i +RT log

(
φiZci
c0

)
, (8)

where c0 = N/V0 is the mixture concentration at the reference volume, i.e., the volume computed from
p0V0 = NRT , with Z0 = 1 assumed for the reference state. The activity coefficient for species Mi is
γi = φiZ. Performing the sum for the condition of chemical equilibrium, we get

m∑
i=1

∆νiµ
0
i +RT log

[
m∏
i=1

(
φiZci
c0

)∆νi
]

= 0 . (9)

Recalling that ai = φiZci, we solve for the product of activity concentrations in (6) to get
m∏
i=1

a∆νi
i = exp

(
−∆g0(T )

RT

)
c
∑m

i=1 ∆νi
0 , ∆g0(T ) ≡

m∑
i=1

∆νiµ
0
i . (10)

Hence, to compute one rate parameter given the other when kinetics are expressed in terms of activity
concentrations, we only need to compute the standard equilibrium constant with which we are familiar.
If the rates were, however, written with standard concentrations, the equilibrium constant appearing on
the right-hand-side of (4) would be harder to compute, because its evaluation would require the activity
coefficients (being functions of an unknown equilibrium state), and not solely the temperature.

While the equilibrium constant is relatively simple to compute, to evaluate the production rates we must
compute the activity coefficients, i.e., the fugacity coefficients. See Schmitt et al. [5] for the fugacity
coefficient for the BKW EOS. Once again, we verified our implementation by making comparisons
to TIGER for a model system, where we found excellent agreement for the chemical potentials of
individual species in a mixture over a wide enough range of pressure to include real-gas effects.
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Figure 2: Plots of temperature, pressure and composition evolution for (left frame, open symbols) real-
gas kinetics and (right frame, closed symbols) ideal-gas kinetics for the hydrogen-oxygen system. The
horizontal dash-dotted lines are the equilibrium values from TIGER for the given quantity based on line
color, e.g., blue for the pressure and purple for YOH.

4 Numerical Integration and Verification Tests

In HyBurn we need to integrate production equations like those shown in Section 3 at each time step to
update the chemical composition. The code works with mass fractions Yi instead of concentrations, and
the system of m (the number of species) ordinary differential equations (ODEs) is

dYi
dt

=
Wi

ρ

r∑
j=1

νij
dωj
dt

= fi , i = 1, . . . ,m , (11)

where r is the number of reactions in the chemical mechanism, νij is the net stoichiometric coefficient
of the ith species in the jth reaction, Wi is the molecular weight of the ith species, dωj/dt = ω̇j is the
production rate of the jth reaction, which takes the same form as (5), but with an additional subscript j on
the parameters to identify a particular reaction. To integrate the system (11) we use the YASS integrator,
which is first-order accurate, very robust and precisely conserves mass without ad-hoc adjustments or
corrections [11]. YASS requires the exact Jacobian Jik = (∂fi/∂Yk)e,v,Yl 6=k

, which we do not have
space to summarize. We have also conducted integration tests with the VODE integrator [12] using an
approximate Jacobian for additional verification of our formulation.

As an initial verification test of the kinetics formulation, we compute the evolution of an H2, O2 and OH
system governed by the reaction H2 + O2 −−⇀↽−− 2 OH. The forward rate parameter is of the modified
Arrhenius form kf = aT b exp (−E/RT ), where we arbitrarily take a = 1 × 1010 cm3/mol-s, b = 0
and E = 1 × 104 cal/mol. The initial mixture is equal parts H2 and O2 (by moles) at a temperature of
2000 K, and to ensure real-gas effects are not negligible, we set the initial pressure to 10000 atmospheres.
We assume adiabatic and constant volume conditions for the reaction. The evolution of the system in
HyBurn is shown in the left frame of figure 2, where we have included horizontal lines for the exact
equilibrium solution computed by TIGER. To understand the importance of computing a reverse rate
parameter that is consistent with equilibrium, in the right frame we show the evolution of the same
system with “ideal gas kinetics”, i.e., equations (3) and (4), with the equilibrium constant (erroneously)
taken as function of temperature only. This mimics what would happen in a code if the BKW EOS were
substituted for the ideal gas equation of state, without any modification of the kinetics formulation. As
we see in the right frame, the code converges to an incorrect equilibrium state at a very different rate.
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To test the kinetics scheme in a hydrodynamic calculation, we simulate the development and propagation
of a 1-D over-driven steady detonation in a reactive mixture. The initial conditions are a mixture of H2,
O2 and N2 with mole fractions χH2 = 0.5, χO2 = 0.25 and χN2 = 0.25. The initial pressure and
temperature are 100 atm and 300 K, respectively. We constrain the system to only contain O, H, OH,
HO2, H2O2 and H2O, in addition to the H2, O2 and N2 forming the initial mixture. The evolution of
the chemical state in HyBurn is governed by the mechanism used by Schmitt and Butler [13], but with
elementary rates expressed in terms of activity concentrations. In HyBurn we set up a reverse impact
problem with a rigid left boundary condition and an inflow boundary condition to the right. We found
that an inflow particle velocity of 2.5 mm/µs produced a steady detonation (another test at ∼2.1 mm/µs
was longitudinally unstable). Our HyBurn simulation domain is ∼40 µm long, and it is clear when
viewing the solution in Visit that a nearly-steady wave is produced within the first, say, 5-10 µm of
the domain. Using Visit, we extract profiles when the detonation is near the end of the domain and
plot the results alongside the relevant Hugoniot loci computed with TIGER in frames (a) and (b) of
figure 3. Aside from the first few points within the numerical shock profile, the solution through the
wave falls directly on the Rayleigh line, giving confidence that the code is producing the correct steady-
wave physics. In frames (c) and (d) we plot solution profiles along with the exact ZND profile obtained
by integrating the necessary ODEs with VODE. The step-like appearance of the numerical profile (due
to our oversampling of the data while making the Visit lineout), which reflects the grid resolution, gives
us confidence that the reaction zone is resolved in this flow.

5 Conclusions

We have presented the core features of a model intended for high-fidelity simulations of detonation
product afterburn. By adopting the BKW EOS, which has as its backbone an ideal gas mixture, we
are able to capture the high density and pressure states relevant to detonation, while maintaining a
detailed accounting of the species in the flow. The finite rate chemical kinetics scheme employed for
our calculations uses activity concentrations in the rate expressions, which readily enables the code to
converge to the correct equilibrium state. Results from extensive verification tests between HyBurn and
the TIGER thermochemical equilibrium code indicate that the BKW EOS is implemented correctly and
that the kinetics scheme approaches the correct equilibrium. Future work will focus on verifying the
chemical production rates and conducting simulations of detonation product expansion and afterburn.
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Figure 3: Thermodynamic loci and points relevant to steady wave analysis in the (v, p) plane in frame
(a), and in the (up, p) plane in frame (b), using both the YASS and VODE integrators in HyBurn. Frozen
(unreacted) and equilibrium (fully reacted) Hugoniot loci computed with TIGER. In frames (c) and (d),
detonation profiles from HyBurn, with open symbols for simulations with YASS and closed symbols
for simulations with VODE. Exact ZND solution starting from the von Neumann state shown with thick
solid lines. Data extracted from simulations after the detonation has traveled approximately 40 µm.
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