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1 Introduction

One of the strategies for flame stabilization in a flow of combustible mixture is to place it in the wake
of a bluff body, that acts as a flame holder. Systematic studies of this problem can be found in literature
since at least 60 years [1–5]. More recently, the use of computational facilities has allowed advances
in the understanding of these flame stabilization processes [6–15], but fundamental aspects still remain
unexplored.

A series of experimental and numerical studies of a flame stabilized behind a fixed and a rotating cylinder
in [7, 9–11] have shown different flame positions, shapes and dynamics when the temperature of the
flame holder is forced to change. In a recent study [15], the flame stabilization by means of a solid
square maintained at a constant temperature in a laminar channel flow was studied. It was found that
for certain values of the parameters, multiple steady-state solutions corresponding to a zero value of the
total heat flux on the square surface arise. In this case where multiple solutions are found, it is natural
to think that not all of the solutions can be stable.

In the present work we study a flame stabilized by means of an isolated highly conducting circular
cylinder placed perpendicularly in a uniform flow. We apply a number of simplifications to the analyses
mentioned above, eliminating difficulties related to the square shape of the body or the presence of
additional geometric parameters in a channel of finite width, as well as complex chemical kineticss or
conjugate heat transfer, so that a parametric analysis is possible. This allows to focus the study on the
physical reasons for the appearance of non-unique steady-state solutions and to investigate their stability.

2 Mathematical Formulation and Numerical Treatment

We consider a circular cylinder of radius R perpendicular to an incoming flow of a combustible mixture
at initial temperature T0 and with a uniform velocity U0 far upstream relative to the cylinder. We assume
that the planar flame speed, SL, is less than the velocity of the mixture, SL < U0, thus preventing the
flame to propagate upstream. Under this condition, flame stabilization is only possible under the action
of the cylinder that works like a flame holder.

The sketch of the problem and the coordinate system are shown in Fig.1. For simplicity, the problem
is considered two-dimensional and all solutions are assumed to be mirror-symmetric about the x-axis.
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Thus, all dependent variables are functions of the spatial variables r and ϕ, where x = r cosϕ, y =
r sinϕ and 0 < ϕ < π.
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Figure 1: Sketch of the problem, the coordinate system, the illustration of an anchored flame (a dashed-
line contour) and stream function isolines (solid lines) calculated for Re = 20.

Considering the mixture to be deficient in fuel, the mass of fuel consumed per unit volume and time is
given by Ω = Bρ2Y exp(−E/RT ), where Y is the fuel mass fraction, B is a pre-exponential factor, ρ
is the density of the mixture, E is the overall activation energy andR is the universal gas constant.

We consider a diffusive-thermal model, formally assuming that the density of the mixture ρ, the thermal
diffusivity DT , the individual molecular fuel diffusivity D, the heat capacity cp, and the kinematic
viscosity ν are all constant. Consequently, the flow field is not affected by the combustion field and
is determined a priori by solving the standard Navier-Stokes equations. The study is limited to thin
cylinders and small Reynolds numbers, thus the velocity field is assumed to be independent of time.
If the characteristic length and speed are chosen as R and U0 and the pressure variations are made
dimensionless using the dynamic pressure ρU2

0 , the velocity field v is determined from

(v · ∇)v = −∇p+Re−1∆v, ∇ · v = 0,
r = 1 : v = 0, r →∞ : v = ex,

(1)

where Re = RU0/ν is the Reynolds number.

The combustion field is determined by the coupled energy and fuel balance equations with the velocity
field computed from Eqs. (1). In the following, the laminar flame speed of the planar adiabatic flame
SL and the thermal flame thickness defined as δT = DT /SL are used to specify the non-dimensional
parameters. The non-dimensional temperature is defined by θ = (T − T0)/(Te − T0), where Te =
T0 +QY0/cp represents the adiabatic temperature of the corresponding planar flame, and the fuel mass
fraction is normalized by its upstream value Y0. Choosing the convection time R/U0 as a unit of time,
the dimensionless transport equations become

∂θ

∂t
+ (v · ∇)θ =

1

RePr
∆θ +

d

RePr
ω (2)

∂Y

∂t
+ (v · ∇)Y =

1

LeRePr
∆Y − d

RePr
ω (3)

where ∆ = ∂2/∂r2+r−1∂/∂r+r−2∂2/∂ϕ2 is the Laplace operator and ω = β2

2Leu2p
Y exp

{
β(θ−1)

1+γ(θ−1)

}
is the dimensionless reaction rate. The factor up = SL/UL introduced in this expression allows to
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accommodate for the difference between the asymptotic value of laminar flame speed obtained for large
activation energy (β � 1) and the numerical value SL for finite β. The numerical values of up were
reported in [16] as a function of the Lewis number.

The following non-dimensional parameters appear in the above equations: the Zel’dovich number, β =
E(Te − T0)/RT 2

e , the Lewis number, Le = DT /D, the heat release parameter, γ = (Te − T0)/Te,
the Prandtl number, Pr = ν/DT , the Reynolds number, Re = U0R/ν, and the reduced Damkohler
number, d = R2S2

L/D2
T . In this work we assigned the values β = 10, γ = 0.7, Le = 1 and Pr = 0.72.

In this work we assume that the thermal conductivity of the solid material is much higher than that of the
gas. In this case the temperature of the cylinder remains uniform and depends only on time. Denoting the
temperature of the cylinder as θw and the local heat flux on the cylinder surface as qL(ϕ) = ∂θ/∂r

∣∣
r=1

,
the energy balance equation for the cylinder becomes:

C
dθw
dt

= q, where q =

π∫
0

qL dϕ is the total heat flux. (4)

Here C represents the total dimensionless thermal capacity of the cylinder. In realistic cases of metal
flame holders, for example, this parameter should be much greater than one.

The boundary conditions for the temperature and mass fraction on the cylinder surface become:

0 < ϕ < π, r = 1 : θ = θw,
∂Y

∂r
= 0 . (5)

On the x-axis, standard symmetry conditions are assumed:

1 < r <∞, ϕ = 0, π :
∂θ

∂ϕ
=
∂Y

∂ϕ
= 0 . (6)

The boundary conditions for the far-field temperature and mass fraction are set as follows:

r →∞ :

{
∂2θ/∂r2 = ∂2Y/∂r2 = 0 , 0 < ϕ < ϕ∗ .
θ = Y − 1 = 0, ϕ∗ < ϕ < π ,

(7)

It should be noted that the influence of the far field boundary conditions becomes negligible if the
computational domain is chosen large enough. In all calculations presented below we use ϕ∗ = π/4.
This value was varied without any substantial differences in the results.

The steady Navier-Stokes Eqs. (1), written in terms of the stream function ψ defined from the relations
vr = r−1∂ψ/∂ϕ, vϕ = ∂ψ/∂r and the vorticity ζ = ∂vr/∂ϕ − ∂(r vϕ)/∂r, were solved numerically
using a Gauss-Seidel method with over-relaxation.

Steady as well as time-dependent computations of Eqs. (2)-(3) were carried out in a finite domain,
1 < r < rmax , with the typical value rmax = 10 ÷ 15. Changing the domain size within these
limits did not lead to noticeable changes in the results for the temperature and mass fraction fields. The
calculations of the velocity field are more sensitive to the size of the domain and therefore were carried
out for rmax = 30÷ 50. The typical number of grid points was 1001× 301 (this was doubled in some
cases without significant differences in results).

In order to determine steady (but not necessary stable) solutions, the steady counterparts (∂/∂t ≡ 0 ) of
Eqs. (2)-(3) were solved using a Gauss-Seidel method with over-relaxation. For unsteady calculations
an explicit marching procedure was used with first order discretization in time. The typical time step
was τ = 10−4 ÷ 10−5. No significant differences were found in the results when τ was halved.
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3 Steady State Solutions

One can see from Eq. (4) that the steady-state solutions (∂/∂t ≡ 0) satisfy the condition q = 0. In these
cases, the cylinder temperature, θw, should be found as part of the solution and the value of C does
not affect it. The following procedure was used: First, the steady-state counterpart of Eqs. (2)-(3) was
calculated for a fixed cylinder temperature. After that, the value of q given by Eq. (4) was considered as
a function of θw.

The results forRe = 20 and different values of d are shown in Fig. 2 left. For small Damköhler numbers
the cylinder temperature corresponding to the steady-state condition q = 0 is unique and found around
θw ≈ 0.15, as the curve with d = 5 shows. For larger values of d, as for d = 10, two additional
steady-state solutions appear, one with an intermediate temperature and another one with a cylinder
temperature close to adiabatic. For Re = 20, the emergence of these two states occurs at d >∼ 7.05.
With a further increase in d, two additional roots of the equation q = 0 appear. This is illustrated by the
curve with d = 20 and occurs approximately in for 19.6 <∼ d <∼ 23.2. Thus, in this interval of d, there
are five steady-state solutions. These solutions are indicated by open circles and the letters ”a, b, c, d, e”
in Fig. 2 left. These additional roots then disappear for d >∼ 23.2. Finally, with a further increase in d,
the steady-state with a relatively cold cylinder disappears and the only steady state presents a cylinder
temperature close to adiabatic. This happens at d >∼ 56.3. It is obvious that all the critical values of the
Damköhler number given here depend on other parameters, in particular, on the Reynolds number.
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Figure 2: Left: The calculated q values given by Eq. 4 plotted as a function of θw for Re = 20
and various d. Right: Local heat flux distribution on the cylinder surface calculated for the solutions
”a”, ”b”, ”c”, ”d” and ”e” marked with open circles.

The flame structure for different values of the Damkohler number is illustrated in Fig. 3 for d = 20.
The solution corresponding to point ”a” in the left figure is characterized by a relatively cold cylinder
temperature and a flame located behind the cylinder. For solution ”e”, for which the temperature of
the cylinder is very close to the adiabatic temperature, the flame originates in front of the cylinder and
surrounds it. For other solutions, intermediate configurations are found.

The local heat flux qL = ∂θ/∂r|r=1 along the surface of the cylinder is shown in Fig. 2 right as a
function of ϕ ( note that ϕ = 0 corresponds to the rear point of the cylinder). For all solutions ”a”-”e”
the cylinder is heated (qL > 0) through its rear and cooled (qL < 0) through the front. It is noticeable
that the heat flux qL is very small for the ”e” solution compared to the other cases.
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Figure 3: Temperature distributions (solid lines, in an interval 0.1) and the reaction rate isoline (a dashed
line, plotted for ω = 10) for the steady-state solutions marked with open circles ”a”, ”b”, ”c”, ”d” and
”e” in Fig. 2, for Re = 20 and d = 20.

4 Stability and Time-Dependent Dynamics

In order to check the above steady-state solutions for stability, time-dependent Eqs. (2)-(3) and (4) were
calculated for different values of the parameter C. The temperature and mass fraction distributions
obtained for solutions b, c, and d were chosen as initial conditions. The time histories of θw are plotted
in Fig. 4, showing that after an oscillatory transition, the solution approaches one of the states ”a” or
”e”. Thus, numerical simulations show that states ”b”, ”c”, and ”d” are unstable, while states ”a” and
”e” are stable. This is indicated in Fig. 3.
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Figure 4: Time histories of the cylinder temperature calculated for Re = 20, d = 20 and several values
ofC. Steady-state distributions ”b”, ”c”, and ”d” were chosen as the initial distributions for temperature
and mass fraction. Dash-dotted lines indicate temperatures for stable states ”a” and ”e”.

5 Summary and Discussion

This study of flame stabilization by a cylindrical isolated bluff body, showed that there is an interval
of combustion reaction intensity (controlled by the Damköhler number) within which the problem has
multiple steady-state solutions. The total number of different non-trivial steady-states, that is, solutions
involving combustion, can reach five plus a trivial cold state without flame. Outside of this interval of
Damköhler numbers, within which there is a multiplicity of solutions, only one nontrivial steady-state
solution remains.

Numerical analysis shows that at least two stationary states are stable. For the first stable solution, the
flame spreads out behind the cylinder and its temperature is relatively low. For the other stable solution,
the cylinder is heated to a high temperature close to the adiabatic temperature of the mixture and the
flame is located around the cylinder.
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