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1 Introduction

Unsteady detonative propulsion devices are being studied for their potential to increase thermodynamic
efficiency over steady deflagrative devices. The basis of any study concerning these propulsion systems
generally starts with a thermodynamic analysis. The current work is based on the analysis by Paxson
and Kaemming [1]. In it, they show how the control volume approach applies to an unsteady, constant
volume combustor and that an unsteady combustor has fill and blowdown phases that must be accounted
for. This accounting ensures that energy is conserved in the analysis. Currently, Paxson and Kaemming’s
analysis only applies to constant volume combustion since it requires a spatially uniform state within
the combustor. The challenge is extending the analysis to study detonative combustion which requires a
model that can handle spatial non-uniformity.

Another goal of the current work is to develop a better understanding of how the unsteady, quasi one-
dimensional Euler equations are used in the analysis of unsteady propulsion devices. An often over-
looked term relevant to the ideal expansion of combustion products during a blowdown process is also
introduced. By carefully applying the correct form of the mass, momentum, and energy equations to the
propulsion device and the processes occurring within, new insights are developed in the thermodynamic
analysis of unsteady propulsion devices. These insights lead to new questions and research topics for
future work.

2 Unsteady Quasi One-Dimensional Euler Equations

The integral forms of the unsteady, quasi one-dimensional Euler equations are
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This form of the equations allows for moving inflow and outflow boundaries. The boundary velocity is
given by ub. The moving boundaries are useful when examining the flow of reactants into the combustor
and the flow of products out of the combustor during the fill process shown later. Additionally, the energy
equation has an extra work term associated with time-varying area. This term arises if A/A∗ must vary
to ideally expand the flow or if multiple unsteady streamtubes are interacting with each other. Further
information on the unsteady quasi one-dimensional Euler equations with time-dependent area variations
may be found in the textbook by Warsi [2].

3 Conservation of Energy - The Refill Process

The unsteady propulsion cycle being considered is an idealized pulse detonation engine cycle. A steady
inflow process is assumed with an unsteady combustion and an unsteady blowdown process. The un-
steady combustion and blowdown require the combustor to undergo the following processes cyclically:
fill, combustion, and blowdown followed by fill again. The proper application of the conservation equa-
tions to the refilling process is essential to ensuring energy conservation when examining the cycle as a
series of intermediate steps.

Figure 1: Control volume analysis of the unsteady refilling process.

Specifically, the moving control surface boundary between the reactants and products means that for re-
actants entering the combustor, the energy flux, ṁet, is required to correctly ensure energy conservation.
For a steady flow, the enthalpy flux, ṁh0 = ṁ(cvT + u2/2 + P/ρ) is used. This important distinction
is due to the moving boundary requirement when applying a control volume analysis of an unsteady
flow process. This causes the PuA terms in the energy equation to cancel out. Note that if the control
volume is drawn around the entire propulsive device, there is no moving boundary and the enthalpy flux
should be used at the boundaries. However; when analyzing the processes occurring inside an unsteady
propulsion system, it is important to use the correct flux to ensure energy conservation.

4 Application to Detonative Combustion

The analysis done by Paxson and Kaemming was only for a constant volume combustion process [1].
The challenge with applying their model to a detonation-based combustion device is that an unsteady
detonation wave is not only temporally nonuniform but spatially nonuniform as well. Whereas a constant
volume combustion process can be approximated as occurring everywhere simultaneously, a detonation
wave consists of the detonation followed by an expansion.

The simplest unsteady, detonative combustor that can be studied is a one-dimensional detonation wave
traveling in a tube. This is also known as a Pulse Detonation Engine. The advantage to studying this
type of detonative combustor is that analytical solutions for the detonation and expansion waves are
known [3]. For calorically perfect gases with constant molecular weights, the Chapman-Jouguet Mach
number is

MCJ =

√
(γ + 1)Q+ 1 +

√
[(γ + 1)Q+ 1]2 − 1
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where Q = q/cp/T3. The expansion wave profile behind the detonation wave is given by

a

a4
= 1− γ − 1

γ + 1

(
1− x

a4t

)
where a4 is the speed of sound in the products that have been decelerated to zero velocity behind the
detonation. Using the speed of sound; the pressure, temperature, and density through the expansion
wave may be found using the isentropic relations.

Figure 2: Stagnation property variation of mass leaving the combustor.

It is possible to numerically integrate the fluxes out of the combustor due to the motion of the detonation
wave and the expansion wave. The conservation of mass equation is used to calculate the amount of
mass leaving the combustor due to the detonation and expansion:
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This integral is evaluated from the instant the detonation wave is at the exit of the combustor until the tail
end of the expansion wave leaves the combustor. After this, there is a uniform state in the combustor and
the constant volume blowdown relations may be used to determine properties in the combustor. This is
illustrated in Fig. 2 where the stagnation pressure and temperature of the mass leaving the combustor is
plotted for a detonative and constant volume combustion process. Note that for the detonation blowdown
phase, the stagnation properties are larger than for an equivalent constant volume combustion process.
However, after the detonation and expansion leave the combustor, the blowdown and refill proceeds the
same as the constant volume. This increase in stagnation properties during the detonation blowdown
represents the extra work potential of detonative combustion over constant volume combustion.

5 Ideal Expansion of Unsteady Flows

Ideally expanding a flow generally means to expand the flow down to the ambient pressure. For the
ram cycle considered in this work, this expansion is accomplished using a converging-diverging nozzle.
The equation to determine the nozzle expansion ratio, A8/A9, is derived from the steady quasi one-
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dimensional Euler equations and is given by
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where P9 = P0 is a constant but Pt,4 varies with time. This means the nozzle expansion ratio also varies
with time. This moving boundary means that the previous equation is incorrect since it doesn’t take into
account the unsteady effects due to the changing nozzle ratio. The additional work term in the equation
depends on ∂A/∂t. Since the flow boundaries must change to ideally expand the flow, work may be
done of the flow or the flow may be doing work on the boundaries. The effect of this work term is to
change the exit velocity of the flow leaving the nozzle.

The main implication of this additional work term is that it is not possible to ideally expand an unsteady
flow without work transfer to or from the fluid streamtube. For a single stream, this would mean a
moving nozzle which is impractical on the time scales of most unsteady propulsion devices. Another
possibility is a plug or aerospike nozzle concept where the work transfer is accomplished through the
boundary between the streamtube and the atmosphere. An additional solution is to have multiple streams
that transfer work between each other in the limit that they interact with each other but do not mix.

6 Discussion and Conclusions

The goal of this work is to carefully apply the correct form of the conservation laws to ensure that the
thermodynamic analysis of unsteady propulsion systems conserves energy. An often overlooked aspect
of unsteady flows is when to use the energy flux or enthalpy flux to determine the energy entering or
exiting a control volume. For unsteady flows, the filling of the combustor with reactants and the removal
of products is most easily done by having two control volumes representing the reactants and products.
This means there is a moving control volume boundary between the reactants and products that cancels
out the pressure work terms. This cancellation is the reason for using the energy flux over the enthalpy
flux.

By recognizing that a detonation is spatially non-uniform, it is shown that a simple model representing
an unsteady detonation wave in a tube can be integrated to correctly recover the energy flux out of the
combustor. The model examined was for a Pulse Detonation Engine; however, the method applies to
any unsteady combustor that is also spatially non-uniform. This extends the methodology of Paxson and
Kaemming to combustion models more complicated than a spatially uniform, constant volume process.

Lastly, ideal expansion is shown to require time-dependent area variation of the streamtube leaving the
combustor. This means that the quasi-steady approximation is incorrect even in the limit of a slowly
varying flow. For a single stream, a moving nozzle is impractical. The question that arises from this
analysis is that if the nozzle is fixed, what is the ideal fixed area ratio that maximizes the thrust? Another
question is how does a plug nozzle interact with the flow and can the atmosphere be used to ideally
expand an unsteady flow with work transfer? It is also possible to consider multiple streams that interact
with each other in the limit of not mixing but still transferring work between the streams. This interaction
would require solving the unsteady Euler equations with time-dependent area variation. The analysis
could be done using either a traditional CFD code or with the method of characteristics. For an ideal,
isentropic expansion, the exit pressure and temperature would not change since the states are related
isentropically and work does not change that. The effect of the additional work term would be in
determining the exit velocity which is needed for thrust calculations.
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