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1 Introduction

The transition from deflagration to detonation (DDT) is an important process to avoid costly disasters in
the petrochemical industry. Example of such a disaster are the 2005 Hertfordshire oil storage terminal
fire or the 1970 propane vapour cloud explosion in Port Hudson. Such events have far-reaching disastrous
consequences due to the overpressures created by detonation waves. It is well-known that in experimental
and numerical premixed flames, the flame front is rarely planar and quickly forms a cellular structure with
cusp-like sections between the cells. These instabilities in the flame front have the effects of increasing
the flame velocity. Under the quasi-isobaric, near-equidiffusional (Le → 1) and infinite activation energy
(Ea → ∞) approximation, Darrieus [1] and Landau [2] have predicted independently that, in a premixed
combustion, the cellular flame front would be unconditionally unstable with a growth rate proportional to
the wave number as,

σ̄ = k̄ū1
Θ2

1 + Θ2

((
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1

Θ2
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)
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where σ̄ is the growth rate of the perturbances, Θ2 = 1+Q, Q the heat release of reaction, ū1 is the velocity
of the flame and k̄ is the wave number of the perturbation.

Moreover, Clavin and Williams [3] and Peke and Clavin [4] accounted for the first-order correction to the
quasi-isobaric flames from the effect of the flame thickness or thermal-diffusive ratios and showed that the
flame thickness has a stabilizing effect. Further analytical work [5–8] and numerically studies [7–12] have
reaffirmed that this effect of the flame structure has a stabilizing effect. They also have shown that reducing
the Lewis number increases the instability and the sensitivity to the energy of activation and that the Prandtl
Number and ratio of specific heats does not have a significant effect on the flame stability.

The effect of compressibility on the instability of premixed flames was then studied analytically in the
linear regime by Travnikov et al. [6]. They showed that not only does the growth rate of a fast flame
increase with the flame velocity, but the range of unstable wavelengths is also increased. Further numerical
investigation by Travnikov et al. [9] confirmed the growth rate in the linear region that was found in his
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previous paper were correct. He also demonstrated that, in the compressible regime, the growth rate is
affected by the precompression region in the unburned gases. Further analytical studies done by He [13]
and Bychkov [14] have shown the instability in the linear domain rapidly disappears when approaching the
CJ deflagration velocity. To confirm these new findings and to enhance the understanding of the effect of
the compressibility on fast flames, this study systematically examines the effects of compressibility on the
growth rate and propagation velocities of cellular flames by increasing the flame Mach number from the
quasi-isobaric flame velocity to the Champan-Jouget deflagration velocity.

2 Numerical Model

In order to simulate the hydrodynamics of a deflagration flame, the compressible Navier-Stokes equations
are used, coupled with the 1-step model to simulate the non-equilibrium hydrodynamics of the system using
the MG code developed by Mantis Ltd. [15]. The governing equations are the conservation of mass,
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species transport,
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Where, the non-dimensional stress tensor is given by σij = Pr
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and the reaction

rate is W = AρY e−Ea/T . The non-dimensional variables are scaled using the following scheme:
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ρ̄1V̄ 2
1 c̄p

, Ea=
Ēa
V 2
1

, Q=
Q̄

V 2
1

, Y=
Ȳ
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where an overbar denote dimensional properties unless indicated otherwise. In these expressions, t is the
time, xi is the space vector, ρ is the density, ui is the velocity vector, V1 is the velocity of the planar flame, p
is the pressure, e is the specific kinetic and thermal internal energy, T the temperature,A is the mass fraction
of reactants, k is the thermal conduction constant, cp the heat capacity, Ea is the activation energy, γ is the
ratio of specific heats, λ is the diffusion coefficient, Rg is the real gas constant, T is the temperature, Qn is
the heat release of reaction, Pr is the Prandl number, Le is the Lewis number, Y is the fraction of reactants
and Λ is the pre-exponential value of the reaction rate.

27th ICDERS – July 28th–August 2nd, 2019 – Beijing, China 2



Fecteau, A. An Investigation of Propagation of Compressible Deflagration

3 Numerical Setup

In this section, the numerical setup and its significance of the results are discussed. Sharpe [8] has shown
that the length of ±2000 for the quasi-isobaric cases is sufficient even if the pressure waves reach the
boundaries. Further studies on the domain length for the compressible regime show that a domain length of
±2000 is acceptable. To study the evolution of fast flames in their intrinsic cellular state, the domain width
have to be such that the deflagration exhibit cellular growth within the domain, while also limiting the width
of the domain to negate cell-cell interactions, as they are not the main interest of this paper. We chose the
domain width to be 16.5, for all problems stated above, to be approximately half the maximum growth-rate
wavelength of the most stable or quasi-isobaric case (Problem 1), the maximum growth rate was found
using the isobaric linear stability analysis by Liberman [5]. We chose this to minimize the risk of having a
domain width that stabilizes the flame back to a planar state and to minimize the computation time required
to get the evolution of the stiffest cases, due to the low Mach numbers. The choice of boundary condition is
important for numerical accuracy and to minimize their effects on the solution. The boundaries for the inlet
and outlet of the domain were chosen to be of a Dirichlet type with values given by the 1-D jump condition,
while the boundaries bounding the y-direction were chosen as symmetry conditions. This allows us to use a
computational domain that is half a cell’s wavelength in the domain. Throughout the computational domain,
a minimum refinement of 2 numerical cells per flame length is used with 4 levels of refinement available
to the solver. A mesh level comparison is done at every time step to resolve the section of the mesh that
requires more cells. Finally, to ensure that the reaction was resolved at all times, the maximum resolution of
32 grid points per unit length is used in the region where the progress variable Y is between 0.01 and 0.99.

It is interesting to define the Zel’dovich number, β as

β =
QEa

(1 +Q)2
. (6)

Four sets of parameters have been chosen for this study. The Zel’dovich number and heat release are both
changed independently while γ = 1.4, Le = 1, Pr = 0.75 are kept constant.

Table 1: Important parameters for problems of interest.

Name γ Pr Le Q β

Problem 1 1.4 0.75 1 6 5
Problem 2 1.4 0.75 1 6 10
Problem 3 1.4 0.75 1 9 5
Problem 4 1.4 0.75 1 9 10

Each of these parameters is studied for Mach numbers ranging from their quasi-isobaric flame velocities
(Mf = 0.005) to their compressible Chapman-Jouguet (CJ) deflagration velocity (Case 1 & 2: Mf =
0.18028) and (Case 3 & 4: Mf = 0.148777).

The initial condition is set as an protrusion of the 1-D solution across the y-domain. In order to excite any
instability, an initial perturbation of the x-direction of the 1-D flame profile of the form A0 cos(2πy/λ)
where A0 = 0.01 is used.

For a given set of parameters and flame Mach numbers, the value of Λ is still unknown and has to be found
iteratively. To do this, the solution of the 1-D problem is found using an implicit numerical solver. Only
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once the correct value of Λ is found, a steady state solution for the given Mach number of the flame can
be found. Figure 1 shows a comparison of the results of Case 1 re-dimentionalized using p̂ = p

γM2
1

and

T̂ = T
γM2

1 (Q+1)
. We notice that, while the quasi-isobaric and CJ deflagration flame profiles are similar, there

are two significant differences. The first and most obvious is the pressure drop after the reaction zone in
the CJ deflagration is more than half of the unburned pressure while in the quasi-isobaric case the drop in
pressure is less than 1/10th of one percent. The second is that the increase in temperature is more significant
in the quasi-isobaric profile due to the smaller pressure drop. There is also a peak in the temperature profile
that appears for the higher-speed case.
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Figure 1: 1-D profile of Problem 3 for the quasi-isobaric case (left) and the fast flame (right): Density( ),
Pressure( ), Temperature( ), Reaction Zone( ).

4 Numerical Results

This reaction model is not representative any specific real gas mixture due to its simplicity. These equations
are, rather a tool to investigate the possible effects of instability in flames and the effects of changing macro-
properties of reactions such as the energy of activation of a mixture and the heat release of reaction. Fast
turbulent burning velocities are modelled using laminar profiles, with no turbulence. To achieve these fast
flames, the velocity of the flame can be increased by increasing the pre-exponential factor of the Arrhenius
reaction term. This increase in the rate constant of the reaction is intended to model an increased level of
turbulence, and not a change in chemical kinetics. The reaction in the quasi-isobaric flames happens after
the species diffusion zone is almost completed while, at the CJ deflagration speed, the reaction zone is at
the front of the diffusion zone, this is correlated with a reaction zone that is affected by turbulence. A Lewis
number of unity was also chosen to simulate a fast flame regime where propagation is strongly affected
by turbulence, one can expect reduced significance of the effect of the thermodiffusive instability in such a
situation.

Figure 2 depicts the flame speed in a frame of reference of the pre-shocked unbuned gas (Vabs). The flame
speed calculated from the reaction rate (Vr =

∫
Wdx) and the flame surface area (Ar). One can observe that

the growth rate of the isobaric case is much slower than the fast flame. It is also notable that the increase in
the reaction velocity in the fast flame is not proportional to the increase in the flame area, while in the quasi-
isobaric case is similarly proportional. The increase in reaction rate of the flame with respect to the surface
area of problem 3 is shown in Table 2 as well as the velocity of the flame in the pre-shocked unburned gas
frame of reference.
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Figure 2: Reaction rates of Problem 3 for Mf = 0.03, Mf = 0.07, Mf = 0.11 and Mf = 0.148777: Flame
surface area( ), Flame Velocity with respect to unperturbed unburned gas( ), Turbulent burning
velocity( ).

Figure 3 shows the evolution of the density for Case 3 at a time of 0, 10, 20, 30 and 40. A significant
compression zone appears in the unburned gas. This precompression of the gas could explain the increased
reaction rates that we see in Figure 2 for the fast flame. We hypothesize that this precompression region has
three significant effects on flame stability in the compressible regime. The first cause of instability is due
to the pre-heated region caused by the pre-compressed gas in front of the flame. The simulation show that
in early development of the cellular structure the compression is most notable in the convex section of the
flame. This means that, due to the slight temperature rise, the precompression increases the flame velocity
at the apex of the flame. This increases its growth rate until the precompression zone stabilizes through
the domain at a later time. The precompression also has the effect of convecting the gas forward. In other
words, the flame will then be convected forward by the increase of velocity in the pre-compressed region.
This can explain the difference between the velocity of the flame in the stationary frame of reference and
the velocity of the flame calculated by the reaction rate. Finally, we would expect that the flame would have
more difficulty expanding in a denser region, so that the denser pre-compressed area would slow down the
growth rate of the cells. The interaction between these three effects and the Darrieus-Landau instability
is a very difficult problem to separate. Table 3 shows the percent increase in conserved properties in the
precompression region denoted by the subscript ”s”, as expected the precompression region increases in
strength as flames propagate faster.
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Table 2: Flame velocity with respect to the reaction surface area.

Mf Vr/Ar Vabs/Ar
0.03 0.99 1.65
0.07 1.04 1.93
0.11 1.20 2.66
MCJ 2.06 4.86

Figure 3: Density Evolution of Fast Flame for problem 3

4 Vorticity Evolution in Flames

Due to compressibility and density change, vorticity production is prominent in the flame structure of cellu-
lar deflagration. An analysis of the vorticity as well as the terms in the vorticity equation is done for all four
problem stated.

Vorticity is an indication of the areas where turbulence is also expected to be prominent, it can also help
isolate other important flow characteristics. Vorticity defines the local rotation of the fluid compared to the
continuum and can be measured using

ωi = eijk
∂vk
∂xj

. (7)

Since vorticity is a manifestation of angular momentum, we can analyze the evolution for vorticity by taking
the curl of the momentum equation,

∂ωi
∂t

= −vj
∂ωi
∂xj︸ ︷︷ ︸

Convection

+ωj
∂vi
∂xj
− ωi

∂vj
∂xj︸ ︷︷ ︸

Deformation

+ eijk
1

ρ2
∂ρ

∂xj

∂p

∂xk︸ ︷︷ ︸
Baroclinicity

+ eijk
∂

∂xj
(
1

ρ

∂τkm
∂xm

)︸ ︷︷ ︸
Viscous

. (8)

There are four processes that can lead to a change in the local vorticity. The vorticity can be convected by
the background flow velocity. Deformation can be important, however in a 2 dimensional flow the ωj ∂vi∂xj

is
zero due to vorticity only existing in the z-direction. We can also get vorticity concentration or dilution due
to flow accelerating or decelerating. The baroclinicity is a source of vorticity due to the misalignment of
density and pressure gradients, we can imagine that this effect will be more prominent in the compressible
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Table 3: precompression jump in primitive variables.

Mf ρs/ρ1 Ts/T1 ps/p us
0.03 1.03 1.00 1.00 0.01
0.07 1.11 1.04 1.15 -0.47
0.11 1.35 1.13 1.53 -1.86
VCJ 2.31 1.44 3.30 -5.33

regime than the incompressible regime. We can also have vorticity production due to the viscous stresses,
these effects are normally strongest in the boundary layers or shear layers.

Figure 4 shows the evolution of vorticity of Problem 3 at the same times as defined for Figures 3. The
vorticity in these plots are concentrated on the cusps of the cellular profile, while the convex section of the
flame does not have significant vorticity.

Figure 4: Vorticity Evolution of fast flame for Problem 3

Matalon [16] showed that the DL instability also predicted that the vorticity in perturbed flames would in-
crease the instability. Figure 4 depicts visually this effect, where, on the left the positive rotation of vorticity
in this section of the flame would have a stabilizing effect, while a negative rotation shown on the right
would have a destabilizing effect. The solution to the chosen model shows that the vorticity rotation that has
been produced once the flame thickness is taken into consideration is expected to have a stabilizing effect.

It is also interesting to see the effects of each individual term in the evolution equation for the vorticity for
the different flame velocities. Figure 6 shows the summation of each term in the vorticity equation in a
moving frame of reference with the flame in a domain of ±10. We can see the general effect of increasing
the Mach number of the flame is an increase in vorticity production, we also notice that the convection and
the viscous term in the equation are non-zero but have minimal effect on the vorticity when compared to the
baroclinic source and the deformation sink.
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Figure 5: Vorticity rotation effects on the flame.
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Figure 6: Vorticity equation terms evolution in time for Problem 3 with flame Mach number 0.03, 0.07, 0.11
and MCJ : Total Vorticity( ), Convection( ), Baroclinic( ), Deformation( ), Viscous( ).

5 Conclusion

The two-dimensional evolution of fast flames using the Navier-Stokes equations with a one-step chemistry
model was evaluated. It was found that, compared with the quasi-isobaric flames, fast flames produce a
significant precompression region affecting the growth rate of the flames. The reaction velocities in flames
compared to the flame area are found to be 0.99, 1.04, 1.20 and 2.06 for flame Mach numbers of 0.03,
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0.07, 0.11 and 0.14877. An increase of 1.65, 1.93, 2.66 and 4.86 was also found when considering the
flame velocity in the frame of reference of the unburned gas. The results also show that CJ flames do not
stabilize as predicted by Bychkov [14] and He [13]. Three possible cause of the increase of instability due to
compressibility are proposed. The first is the increase of reaction rate in the convex section of the flame due
to the pre-heating, the second is the convection of the convex section of the flame due to the unburned gas
velocity and finally the increase density as a stabilizing effect is proposed. Further analysis of the vorticity
showed that the baroclinic source term is the prominent source of vorticity production in flames and that
there is an increase of vorticity in faster flames.
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