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1 Introduction

The Zaidel paradox [1] remains a controversial topic, the community being divided between those convinced
Zaidel’s analysis is unphysical and meaningless [2], and those who see at least some value in his results
[3]. Zaidel analyzed the linear stability of square wave detonations based upon an arbitrary induction zone
length, obtaining a spectrum in which growth rate increases with frequency, which is either unphysical or
points to the higher frequencies associated with the thin reaction zone as being the most unstable. This
was quickly followed by Erpenbeck’s analysis for single step kinetics with finite activation energy [4].
Subsequent studies also resolved the reaction zone, for instance [5]. While it is easy to dismiss Zaidel’s
analysis and to point to Erpenbeck’s as being clearly superior, realistic kinetic models invariably include a
broad range of rates, hence a detonation structure including zones of very different magnitudes. As a result
it is difficult or impossible to analyze stability assuming finite rates for all steps; in many cases of realistic
kinetics [6, 7], such as for instance oxygen-oxygen, the square wave model is actually realistic, because
initiation is typically much slower than the main reaction with [8], for hydrogen, rate ratios of the order of
10−6. It is not just the structure obtained for single step Arrhenius kinetics and high activation energy [9],
but also for all situation where initiation is slow compared with the main reaction. This makes it worthwhile
to revisit the Zaidel pathology, and to identify its physical explanation.

In contrast with shocks, detonation waves are usually unstable, yet there are nowhere near as many results
available for single discontinuity Rankine-Hugoniot (RH) waves, either for transverse linear [10] or non-
linear stability [11]. The former focused only upon marginal stability limits, with regimes of stability,
instability and marginal stability. Following [12] they express limits as functions of a Grüneisen parameter,
for which the Chapman-Jouguet limit depends upon the equation of state. [11] appears to be the only study
of detonation break up, showing that, at least for ideal gases, thin, single discontinuity detonation waves are
unconditionally susceptible to break up into a non-reactive solution consisting of a weaker shock, a contact
discontinuity and an expansion wave.

Crucially, Erpenbeck [9] noted that neither Zaidel’s normal mode or equivalently his Laplace transform
approach could yield a solution to the stability initial boundary value problem, since given the features
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of the Zaidel spectrum, the inverse transform does not exist. For single step Arrhenius and high activation
energy, [13] a singularity appears at the end of the initiation zone in the rate equation perturbation, Thus they
replaced the radiation condition by a condition avoiding that singularity. However the resulting spectrum
still suffers from the same pathology.

2 Inert shocks and Rankine-Hugoniot detonations

A shock wave described as a discontinuity is unconditionally linearly stable to non-planar perturbations in
ideal gases [14]. However in the absence of length- or time scales linear analysis is unable to identify planar
modes for nonreactive shocks, no matter for what fluid. In contrast, for arbitrary fluids, in certain ranges
of values of δ = − ṁ2

/
(∂p/∂v|H), the ratio slope of the Rayleigh over the slope of the Hugoniot line,

either unstable nonplanar modes growing exponentially in time appear, or marginally stable ones, with the
shock emitting constant amplitude acoustics [15, 16, 17]. Here ṁ is the mass flow rate, p is pressure and
v is specific volume, both along the Hugoniot line; index H refers to the partial derivative computed along
the Hugoniot line. Using M for the Mach number on the downstream side of the shock and σ for the ratio
post- and pre-shock density, the three cutoff values are

δ1 = −1− 2M, δK =
M2σ − (1−M2)

M2σ + (1−M2)
, δ2 = 1 (1)

They found that for δ outside the interval (δ1, δ2) the shock is unstable, that it is stable between the Kon-
torovich value δK and δ2, and marginally unstable, emitting acoustics between δ1 and δK . They do not
mention however that δ2 being the tangency point between the Rayleigh and Hugoniot line, shocks for
δ > 1 might violate the second law, in which case it is an existence limit.

Landau & Lifschitz [18] argued that in fluids in which shocks satisfying the second law are compression
shocks, these are linearly stable to planar deformations, as confirmed by more recent work [19]. They
mentioned however (p. 329) the possibility whereby shocks might be nonlinearly unstable, i.e. suscep-
tible to non-linear break up, as ”not having been adequately investigated.” As an extension of his work
on detonations (see below), Erpenbeck [12] revisited linear stability of shocks to non-planar perturbations,
largely confirming previous Soviet results, but because, in contrast with D’yakov, Zaidel, Iordanskii and
Kontorovich, who used to ratio of the slopes of the Hugoniot and Rayleigh lines as the independent param-
eter, he used the Grüneisen parameter Γ = ∂p/∂s|ρ

/
(ρT ), he missed the limit corresponding to tangency

between the two lines, when the conversion becomes singular, since the relationship between δ and Γ is:

Γ =
2(δ −M2)

(σ − 1)(δ − 1)M2
(2)

so that since for δ → 1, M → 1, the value of Γ corresponding to δ2 = 1 depends upon the limit of
(M − 1)/(δ − 1).

Gardner [20] showed that under the conditions for transverse linear instability, shock waves are indeed
also susceptible to planar nonlinear break up, as anticipated by Landau and Lifschitz [18]. Zaidel [21]
revisited and confirmed previous linear stability results, also using the Laplace transform. Kuznetsov [22,
23] expanded upon Gardner’s work, concluding that since the mechanism considered in linear stability
studies is not how planar shocks break up, linear analysis is not as reliable as the nonlinear breakup model.
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Rankine-Hugoniot detonations, i.e. planar reactive shocks, are susceptible to non-linear break up for mix-
tures obeying the ideal gas law [11], and it is possible to extend the proof to a broad range of fluid models
featuring a Hugoniot line with vertical asymptote. Because, following Erpenbeck [12] hence using the
Grüneisen parameter as the independent variable, the linear analysis of Majda and Rosales [10] only identi-
fied two of the three limits, corresponding to δ1 and δK for inert shocks, but as Erpenbeck for inert shocks
[12], they missed the stability limit that occurs at the Chapman-Jouguet point where the relationship between
δ and the Grüneisen parameter is singular. The results of Majda and Rosales [10] are easily recovered from
those of Zaidel and Kontorovich, leading to limits still expressed by Eq. (1) usingM and σ evaluated across
the reactive shock. Thus, in contrast with inert shocks, no close relationship is found between nonlinear
breakup and linear stability limits.

3 Square wave detonations

Following Gardner [20] and Kuznetsov [22, 23] for nonreactive shocks, and Bauwens et al. [11] for single
jump detonations, the potential non-linear breakup of the two singular zones in the square wave model is now
investigated. The steady square wave structure is made up of a nonreactive shock, an induction zone in which
at leading order the solution is spatially uniform, a thin reaction zone also consisting of a discontinuity and
either an equilibrium zone with infinite length, or, for chain-branching kinetics with initiation much slower
than chain-branching, an infinite zone of quasi-equilibrium, in which chain-branching no longer occurs [8].
As seen above, for realistic mixtures, the leading shock is usually stable. However, it is now shown that the
reaction zone is susceptible to non-linear breakup, in which it is replaced by a non-reactive planar solution.
To that effect, it is shown, as done by Gardner for inert shocks [20], that the Riemann problem associated
with the jump across the reaction zone with zero thickness admits, in addition to the reactive solution, a
second, non-reactive one, in which the initiation zone is effectively destroyed.

One might expect that this second solution would, like in the case above, consist of an expansion wave
moving into the initiation zone and a shock moving downstream. However the solution found consists of
two expansion waves, and of course a contact surface in the intermediate region, separating unburnt and
burnt fluid, at which in the absence of diffusion reaction no longer takes place. In the initiation region, the
solution is uniformly equal to that at the von Neumann state, point N, with velocity uN , speed of sound
aN and pressure pN . Past the reaction zone, at point B, these are uB , aB and pB , with pN > pB but
uB > uN . An expansion wave moving into fluid at the von Neumann state ending at both pressure and
velocity matching pressure and velocity in the downstream region would correspond to a situation in which
neither a shock or an expansion wave is required on the downstream side. Since pN > pB but uB > uN ,
one notes that there exist expansion waves moving toward point N, ending either at u = uB or at p = pB .
Considering a wave ending at p = pB , and calling velocity at its end û, then, while both uB and û > uN ,
û could be larger or smaller than uB and û = uB provides the cutoff between shock or expansion wave
moving downstream. Indeed, if û > uB , then a somewhat weaker expansion wave will end up at a pressure
above pB , with velocity still above pB , which is consistent with a shock moving downstream. However
a wave now ending at u = uB with end pressure p̂ > pB would be too strong for a shock downstream.
Thus a solution is obtained made up of expansion wave, contact surface and shock, with for the intermediate
pressure p̄, pB < p̄ < p̂, while for the intermediate velocity ū, uB < ū < û.

If however if û < uB , the expansion wave moving toward point N must be stronger than the wave for which
pressure at the end matches pB . As shown in Fig. 1 for an ideal gas, a solution can still be constructed,
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now made up of two expansion waves moving in opposite directions, and still with a contact surface in the
intermediate region, now with p̂ < p̄ < pB , and û < ū < uB .

Figure 1: Breakup of the reaction zone: existence of a non-reactive solution (ideal gas). Thick continuous
line: pressure p/pN ; thick dashed line: velocity scaled by pre-shock value u0. η = x/u0t with zero at point
N. Contact surface at η = ū/u0.

To determine which of two possible solutions will occur, one needs to compare either û and uB or p̂ and pB .
If p̂ < pB then the solution is made up of two expansion waves. For a mixture obeying the ideal gas law, in
an expansion wave moving into fluid at the von Neumann state, velocity u, speed of sound a and pressure p
are related by

u+
2a

γ − 1
= uN +

2aN
γ − 1

,
a

aN
=

(
p

pN

)(γ−1)/2γ

(3)

Eliminating a and solving for p, for u = uB thus p = p̂,

p̂ = pN

[
1− (γ − 1)(uB − uN )

2aN

]2γ/(γ−1)

< pB (4)

For a detonation wave with Mach number M0 and state B corresponding to a discriminant

∆ = (M2
0 − 1)2 − 2M2

0 (γ2 − 1)Q (5)

with maximum ∆ for the heat release Q = 0, the inert shock, and ∆ = 0 for a Chapman-Jouguet wave,
after some algebra that condition becomes{

1− (γ − 1)(M2
0 − 1−

√
∆)

2
√

[2γM2
0 − (γ − 1)][(γ − 1)M2

0 + 2]

}2γ/(γ−1)

<
1 + γM2

0 + γ
√

∆

2γM2
0 − (γ − 1)

(6)

Which can be shown to be satisfied for the entire range of M0 and ∆, except in the nonreactive case ∆ =
(M2

0 − 1)2 when both sides equal 1 and equality is obtained. Thus at least for ideal gas, the thin reaction
zone is susceptible to nonlinear break up into two expansion waves. The expansion wave moving toward the
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von Neumann point leads to a drop at leading order in the temperature in an increasingly longer part of the
initiation zone. In contrast, with the square wave model, initiation only leads to temperature increasing at
the perturbation level. The initiation process is thus effectively destroyed, which is consistent with the thin
reactive zone being replaced by a non-reactive interface located at the control surface.

Previous results for slow initiation (hence actually a square wave structure) analyzing stability in which the
main reaction zone was resolved [24] are consistent with the current observation: they exhibited a purely real
unstable mode on a time scale resolving the reaction zone. Thus on the longer time scale associated with the
initiation zone, the growth will reach a magnitude increased by a factor like the ratio of these time scales, i.e.
leading order. These results are consistent with [2] in that the Zaidel paradox simply points toward the most
unstable modes being of a faster magnitude, since determined by stability of the main reaction zone. They
are also consistent with the Zaidel stability initial value problem being ill-posed since the inverse transform
does not exist so that the solution in physical space of an initial value problem cannot be reconstructed from
the Fourier modes. Physically, the instability is initiated by an expansion wave moving into the initiation
zone, immediately affecting the structure at leading order. Such a solution cannot be represented as a set of
Fourier modes at a perturbation level.

4 Conclusion

In a square wave structure, the main reaction zone represented as a discontinuity is found to be susceptible to
non-linear break up into a non-reactive structure. Such a break up immediately affects the initiation zone at
leading order, as a front travels which progressively becomes shallower, a situation that cannot be reduced to
a set of Fourier modes at the perturbation level. This explains why the Zaidel model is ill-posed as an initial
value problem and why its spectrum is pathological. These results are also consistent with the presence
of a singularity in the perturbation accounting for incipient kinetics in the initiation zone, for single step
Arrhenius kinetics in the high activation energy limit [13].
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