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1 Introduction

Flames and other contact discontinuities introduce difficulties to numerical modeling of reactive flows due to
the growth of numerical instabilities near these steep gradients. Over the past forty years, many high-order
monotone algorithms have been developed to overcome these problems but were designed for explicit time
integration methods. In this approach, the computational time-step is restricted by the sound speed and the
convective velocity, ensuring numerical stability. Directly adopting these algorithms for low-speed flows,
especially with chemical reactions, could be prohibitively expensive due to the wide disparity of time scales
among the convective, acoustic, and chemical processes.

To overcome the computational difficulties, the low-Mach-number approximation of the Navier-Stokes
equations was proposed. There are two main approaches in the development of algorithms for low Mach
number flows. The first approach modifies compressible solvers, which aims to remove the sound speed re-
strictions in time-steps. Examples include the preconditioning methods [1] and the asymptotic approach [2].
The design of the former method is case dependent, and the latter method filters out the acoustic wave
effects. The second approach uses a pressure correction to include the compressibility by extending an
incompressible solver. A common method is the projection method which includes the SIMPLE family
of algorithms [3] and also methods for reactive flows [4, 5]. Since the pressure and velocity are updated
through an iterative process, these methods could suffer from slow convergence.

In a previous work [6], we applied a Barely Implicit Correction (BIC) [7] to the fourth-order Flux-Corrected
Transport (FCT) [8] algorithm for nonreactive low-Mach-number flows. This approach first solves the
full Navier-Stokes equations using a monotone algorithm with an explicit time integration as a prediction
and then solves one elliptic equation for a pressure correction to eliminate the sound speed restriction in
the time-step. This method maintains a low computational cost per time-step and preserves the effects of
acoustic waves when needed. In [6], we demonstrated the ability of the BIC-FCT algorithm to remove the
sound-speed limit in the numerical time-step for multidimensional nonreactive flow with complex swirling
motions with and without open boundaries.
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In this paper, we extend the BIC-FCT algorithm to compute reactive flows by modifying the integration
procedure to include chemical reactions with heat release and physical diffusion processes. We present two
cases. The simulation of a two-dimensional (2D) steady methane-air triple flame shows that the method can
compute complex flame structures containing diffusion flames as well as rich and lean premixed flames.
The simulation of an unsteady three-dimensional (3D) fire whirl demonstrates that the method can compute
complex unsteady combustion in a turbulent swirling flow.

2 The Integration of BIC with a combustion model

Figure 1: Flowchart of the coupling of the physical processes in one time-step

We solve the time-dependent, compressible, reactive Navier-Stokes (NS) equations using the recently devel-
oped BIC-FCT algorithm [6]. The temporal integration procedure including chemistry is shown in Fig. 1.
This algorithm requires a process-splitting integration procedure. The first step is to compute the global time
step, ∆tg, using the convective Courant-Friedrichs-Lewy (CFL) condition. Each of the diffusive processes,
which include Fickian mass diffusion, Fourier heat conduction, and Newtonian viscosity, has its own explicit
time-step limit due to numerical stability. We then compute these limits, including the limit for the reaction
rate. The maximum reaction time-step is constrained by the amount of time required for a stoichiometric
premixed flame to propagate through 10% of a computational cell. If the required time-steps from these
non-convective processes are smaller than ∆tg, subcycling is applied for the integration of the chemistry
and diffusion with a smaller time-step, ∆tlocal, using the minimum time-step limit of these non-convective
processes.

Independently integrating the non-convective processes using the large time-step ∆tg allowed by BIC-FCT,
even with subcycling, can produce unphysical results. More specifically, ∆tg can be so large that if the
chemistry were integrated independently from the transport, the reaction can go from completely unburned
to completely burned, unaffected by the other fluid processes. In reality, transport and reaction processes
occur simultaneously within the flame. For example, the diffusion process pulls reactants into and away from
the flame as the reaction occurs. Here, we reproduce this by first integrating chemistry for one small time-
step, ∆tlocal, and then integrate the diffusion processes also for one ∆tlocal. The chemistry and diffusion
are subcycled together in this way until the accumulated subcycling integration time reaches ∆tg. Also,
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even with this subcycling procedure, there can be a large rise in pressure wherever the chemical energy is
released because the compressible fluid processes have not redistributed the energy during the reaction. This
rise is not an issue for explicit algorithms because the global time-step is the same order of magnitude as
the chemical time-scale. To maintain constant pressure through the combustion process, the BIC algorithm
removes the change in internal energy from non-convective processes and later redistributes it through the
implicit correction stage. This change in internal energy is shown as S in Fig. 1 and is used in the same way
as for nonreactive flows. This is explained in further detail in Section 3 of [6].

After integrating the chemical and diffusion processes, BIC performs an explicit prediction by explicitly
solving the governing conservation equations using Euler explicit time-stepping and fourth-order FCT [8].
Then, one elliptic equation is solved to obtain a pressure correction. This pressure correction is used to
correct the momentum and energy equations.

The effects of chemical heat release are included by using a calibrated chemical-diffusive model (CDM).
Here, the CDM uses an Arrhenius function to regulate the conversion of reactant to product and the rate
of heat release. In this model, three species are considered: fuel, oxidizer, and product. The chemical
parameters are calibrated to reproduce the flame properties of heptane-air and methane-air mixtures for
varying stoichiometry in a fluid dynamic computation. The CDM is a computationally inexpensive way to
include the effects of chemical heat release in a computation. Details on this calibration procedure and the
chemical parameters can be found in [9].

3 Applications

In this section, two test problems are shown to demonstrate the ability of the BIC-FCT algorithm to compute
complex flame structures. The first problem is a two-dimensional, steady-state, methane-air triple flame and
the second problem is a three-dimensional, unsteady, heptane-air fire whirl.

3.1 2D methane-air triple flame

A two-dimensional methane-air triple flame is simulated using a 16 mm square domain with an inflow-
outflow boundary indicated in Fig. 2a. The top and bottom boundaries are symmetric. The flow is initialized
with a stoichiometric (φ = 1) methane-air laminar flame, shown by the temperature contour in Fig. 2(a).
The inflow has a tanh mixture fraction profile as indicated by the line profile in Fig. 2(a). The inflow is
stoichiometric at the center of the y-axis, fuel-rich approaching φ = 2 along the upper y-axis, and fuel-lean
approaching φ = 0 along the lower y-axis. A coflow of inert gas is applied at the inflow within 2 mm of the
upper and lower boundaries to avoid boundary effects. The inflow velocity is set to be 37.10 cm/s, which is
slightly smaller than the stoichiometric flame speed. This case is calculated on a 1024 × 1024 mesh using
a convective CFL of 0.3.

The steady state flame temperature with superimposed heat release contours is shown in Fig. 2b. Most of
the heat release is near the tip of the flame, around the stoichiometric region. Burning also occurs in the
upper fuel-rich and lower fuel-lean regions. These regions are less reactive compared with the flame tip,
which reduces the flame speed and results in the oblique flame structure. These oblique burning regions are
premixed flames. They are not stoichiometric and there remains excess fuel and oxidizer after burning. The
excess reactants then diffuse towards each other to form a diffusion flame, which is shown in Fig. 2b as the
horizontal heat release contours.
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Figure 2: The (a) initial and boundary conditions and the (b) steady state temperature with superimposed
heat release contours for a 2D methane-air triple flame simulation.

The temperature near the flame tip and in the horizontal diffusion flame region are near the adiabatic sto-
ichiometric flame temperature, indicating that the pressure correction is correctly redistributing the energy
in this complex 2D flowfield.

3.2 3D fire whirl

Fire whirls form when circulation couples with the hot, bouyant flow of burning material, generating
swirling structures of hot gas. The flow field is highly unsteady and is tightly coupled to the diffusion and
combustion processes. Therefore, we compute a 3D fire whirl to demonstrate that the BIC-FCT algorithm
can compute complex, turbulent flow fields with chemical energy release.

A schematic of the geometrical setup and boundary conditions is shown in Fig. 3a. The domain is an
enclosure with four walls which are 60 cm tall and 30 cm wide. The bottom floor is a 30 cm × 30 cm
square. Heptane vapor is injected at the center of the bottom floor with a constant velocity of 0.6 cm/s and
temperature of 371 K within a diameter of 2.54 cm. Air is forced in through the corners with a speed of
80 cm/s along slits which are 6 cm wide to apply circulation. The initial conditions are quiescent air with
a temperature of 298 K and pressure of 1 atm. A column of hot product gas with a temperature of 2500 K
is placed in the center above the fuel inlet to provide a source for ignition.

Figure 3b shows a volume rendering of the stoichiometric mixture fraction contour after the flow has devel-
oped. In Fig. 4, we show the time-averaged temperature, axial velocity, and tangential velocity along the
radial direction at different heights in the domain. Just above the floor as shown by the green and blue lines,
the temperature profile has a slight ‘V’ shape with a lower temperature near the centerline. This is because
of the fuel rich mixture within the core. Halfway up the domain, as indicated by the black line, the tem-
perature at the center increases due to the heat transfer from the flame. The temperature inside the thermal
core eventually develops a peak at the the center because of the flame contraction near the top, which is
shown as the red line. At all heights, the tangential velocity profile exihibits solid body rotation within the
thermal core and irrotational flow outside of it. The development of temperature and tangential velocity is
qualitatively consistent with experimental measurents of fire whirls [10]. The axial velocity shows ‘W’ and
‘V’ shapes at lower heights, with local minima inside the thermal core. The axial velocity at the centerline
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increases as the height increases because of buoyancy and attains a parabolic shape with the peak at the
centerline. This agrees qualitatively with experimental measurements of fire whirls in other configurations
and for other fuels [11].

Figure 3: (a) Schematic of the geometrical setup and boundary conditions of a fire whirl computation. (b)
Isometric view of a volume rendering of the stoichiometric mixture fraction isosurface.

Figure 4: Time averaged (a) temperature, (b) tangential velocity, and (c) axial velocity radial profiles along
different heights of the fire whirl computation.

3 Conclusions

In this work, we showed that BIC-FCT can compute complex flame structures and also obtain physically rea-
sonable results when computing a complex 3D reactive flow. To do this, we extended the recently published
low-Mach-number algorithm, BIC, to include chemistry. We described the BIC procedure with chemistry
and diffusion processes. A 2D methane-air triple flame was simulated. The results showed that the algo-
rithm is able to simulate a complex flame structure containing rich and lean premixed flames along with
a diffusion flame. A 3D simulation of a fire whirl was also carried out to demonstrate the capability of
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BIC-FCT to compute 3D, turbulent, swirling flows with chemical energy release. The radial profiles of tem-
perature, tangential velocity, and axial velocity at different heights show qualitative agreement with other
experimental measurements.

Acknowledgments

This work was supported by the Army Research Office (grant W911NF1710524) and by the National Sci-
ence Foundation under award CBET 1839510. This work was also supported in part by the University
of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and
through the Glenn L. Martin Institute Chaired Professorship and the A. James Clark Distinguished Pro-
fessorship at the A. James Clark School of Engineering. The authors gratefully acknowledge the fruitful
discussions with Dr. Jay Boris and Dr. Gopal Patnaik at NRL. The authors also thank Dr. Ryan Houim of
the University of Florida for assistance and guidance in the implementation of the numerical algorithms and
many other helpful suggestions.

References

[1] Turkel E. (1987). Preconditioned methods for solving the incompressible and low speed compressible
equations. J. Comput. Phys. 72: 277.

[2] Thornber B, Mosedale A, Drikakis D, Youngs D, Williams R.J. (2008). An improved reconstruction
method for compressible flows with low Mach number features. J. Comput. Phys. 227: 4873.

[3] Patankar S. (1980). Numerical heat transfer and fluid flow. CRC press.

[4] Tomboulides AG, Lee JCY, Orszag SA. (1997). Numerical simulation of low Mach number reactive
flows. J. Sci. Comput. 12: 139.

[5] Motheau E, Abraham J. (2016). A high-order numerical algorithm for DNS of low-Mach-number
reactive flows with detailed chemistry and quasi-spectral accuracy. J. Comput. Phys. 313: 430.

[6] Zhang X, Chung JD, Kaplan CR, Oran ES. (2018). The barely implicit correction algorithm for low-
Mach-Number flows. Comput. Fluids. 175: 230.

[7] Patnaik G, Guirguis RH, Boris JP, Oran ES. (1987). A barely implicit correction for flux-corrected
transport. J. Comput. Phys. 71: 1.

[8] Boris JP, Landsberg AM, Oran ES, Gardner JH. (1993). LCPFCT- A flux-corrected transport algorithm
for solving generalized continuity equations. NRL WASHINGTON DC, Tech. Rep.

[9] Chung JD, Zhang X, Kaplan CR, Oran ES. (2019). Low-Mach-Number Simulation of Diffusion
Flames with the Chemical-Diffusive Model. In AIAA Scitech 2019 Forum, p.2169.

[10] Lei J, Liu N, Lozano JS, Zhang L, Deng Z, Satoh K. (2013). Experimental research on flame revolution
and precession of fire whirls. Proc. Combust. Inst. 34: 2607.

[11] Hartl KA. (2016). Experimental investigation of laboratory fire whirls. Available at http://arks.
princeton.edu/ark:/88435/dsp01ng451k990.

27th ICDERS – July 28th–August 2th, 2019 – Beijing, China 6

http://arks.princeton.edu/ark:/88435/dsp01ng451k990
http://arks.princeton.edu/ark:/88435/dsp01ng451k990

	Introduction
	The Integration of BIC with a combustion model
	Applications
	2D methane-air triple flame
	3D fire whirl

	Conclusions

