CO₂ effects on NO reburning by methane in a jet-stirred reactor: Experiments and modeling

Wenhao Li, Pengfei Li, Kai Wang, Fan Hu, Lu Liu State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology Wuhan, Hubei, China

1 Abstract

New experimental results on the NO reduction by CH₄ in both N₂ and CO₂ atmospheres are obtained in a jet-stirred reactor. Experiments are conducted in the temperature range of 600 - 1323 K at 1 atm. The experiments are simulated using an updated reaction mechanism and the simulations are highly consistent with the experiments. The NO-reburning in the CO₂ atmosphere is reduced by 40% - 60%, relative to that in the N₂ atmosphere. The inhibition of methane oxidation under high CO₂ concentrations is responsible for the decrease of the NO reduction efficiency. The main reaction pathways of the NO reduction in the N₂ atmosphere are: NO (\rightarrow HCNO) \rightarrow HCN \rightarrow NCO \rightarrow N₂ and NO \rightarrow HNCO \rightarrow NH₂ \rightarrow NNH \rightarrow N₂, while the primary path in the CO₂ atmosphere is: NO (\rightarrow H₂CN) \rightarrow HCN \rightarrow CH₃CN \rightarrow NCO \rightarrow N₂ due to the chemical effect of CO₂.

2 Introduction

Oxy-fuel combustion [1] is one of the most promising new combustion technologies which is achieved by a strong recirculation of exhausted gases. Such a strategy implies that high contents of CO_2 interact with the reactants oxidation chemistry which can significantly reduce NO_x emissions. However, other NO_x reduction techniques are still needed in many combustion systems to achieve greater reduction. Reburning [2] is a low-cost and effective NO_x reduction technology that has proven to be effective in air combustion and can reduce NO_x emissions by more than 50%. It is worth mentioning that Normann [3] pointed out that reburning technology is a promising option for both traditional and oxy-fuel combustion in his review. Although there are some reburning studies [4-5] in the CO_2 atmosphere in recent years, basic experimental data and further kinetic studies are still scarce.

The jet-stirred reactor is an ideal continuous stirred reactor (0-dimensional) and is suitable for gas-phase kinetics studies. The distributions of thermal and species are uniform inside the reactor due to the high-speed jets of the JSR nozzles. Therefore, the reactions in the JSR occur in a nearly homogeneous

Wenhao Li

environment and can approximate locally occurring at one point of the space. To our best knowledge, there are no reports on the NO-reburning experiment of a JSR under high CO_2 concentrations. Moreover, the experimental data for the correction and optimization of the nitrogen chemical mechanism under high CO_2 concentrations is very scarce. The present study aims to fill the gaps.

Therefore, the purpose of this paper is to carry out reburning experiments and kinetic simulation studies under high CO_2 concentrations in a jet-stirred reactor. Methane was used as the research object to study the CO_2 effects on NO reburning.

3 Experimental setup and Kinetic model

Figure 1. Schematic diagram of the experimental apparatus.

Figure 1 displays the photo of the JSR. The main structure of the JSR is a 40 mm diameter sphere made by quartz and the reactor volume is approximately 60 cm³. The preheated mixed gas is injected into the reactor through the internal four nozzles. The diameter of each nozzle is only 1 mm and thus the initial velocity of the injection jet is sufficiently high. Consequently, the thermal and species distributions inside the reactor are nearly uniform. The JSR is installed and fixed in an electric heating oven with a thermal power of 1.5 kW and the reaction temperature is controlled by the oven. The heating oven is insulated with high-purity alumina fiber and is heated by ferrochromium-doped iron-chromium-aluminum alloy heating wires. High-purity gases (purity above 99.999%) are used in the experiment. The flow rate of gases is accurately controlled by mass flowmeter controllers with the error of $\pm 0.3\%$ of full scale. The exhaust species concentrations after the reaction are measured on-line by using a portable Fourier infrared flue gas analyzer (DX4000) supplied by the Swedish company Gasmet. The concentrations of CH₄, O₂, CO₂, NO, CO, HCN, NO₂, and N₂O can be measured simultaneously, and the measurement error is estimated to be $\pm 1\%$.

Table 1. Experimental conditions in the present work						
	inlet streams					т
case	CH_4	NO	O_2	CO_2	Φ	I K
	ppm	ppm	vol%	vol%		
1	5000	1000	2	0	0.5	600-1323
2	5000	1000	2	30	0.5	600-1323
3	5000	1000	0.7	0	1.43	600-1323
4	5000	1000	0.7	30	1.43	600-1323

Table 1. Experimental conditions in the present work

The experiment was carried out under the pressure of 1 atm and the temperature range was 600 K-1323 K. The total flow rate of the reactants was controlled at 1 L/min, while the concentration of methane was controlled at 5000 ppm. The specific operating conditions were as shown in Table 1.

Wenhao Li

CO₂ effects on NO reburning

Numerical predictions were simulated using the PSR model from Chemkin-PRO. The AURORA code [6] was used for PSR chemical kinetic analysis. In this paper, the mechanism developed by Glarborg [7] in 2018 is selected as the basis and some modifications and updates are made. The mechanism includes the oxidation mechanism of C_1 hydrocarbons, HCN and NH₃, and the reactions describing the interaction between hydrocarbons and nitrogen-containing components. For consistency, the experiment may still require some modifications and optimizations to account for the effects of high CO_2 concentrations. Therefore, in the current work we have added some different reactions related to CO_2 that are not included in the initial mechanism and may work in a CO_2 atmosphere. At the same time, based on our experimental results and considering the previous literature research, we also added some reactions about reburning and further modified and optimized some sensitive reactions. The simulation using the modified mechanism is in good agreement compared with our experimental results. The modified mechanism consists of 151 components and 1408 reactions and the complete mechanism can be obtained from the author.

3 Results

Experiments were carried out in a jet-stirred reactor with a temperature range varying from 600 K to 1323 K under fuel-lean and fuel-rich conditions. Figure 2(a) and 2(b) shows the O₂ and CO profiles with increasing temperature under fuel-lean and fuel-rich conditions. The simulation results using the updated mechanism are basically consistent with the experimental data. As shown in Figures 2, clearly, with the increase of temperature the O₂ consumption slows down in the CO₂ atmosphere compared with that in the N₂ atmosphere, especially under the fuel-rich condition: as the temperature rises from 600 K to 1323 K, the O₂ concentration drops from 0.7% to 0.07% in the N₂ atmosphere while it reduces to 0.23% in the CO₂ atmosphere. This phenomenon implies that methane requires a higher temperature to be fully oxidized in the CO₂ atmosphere than that in the N₂ atmosphere. This finding is consistent with previous investigation on oxy-fuel combustion [4] and can be considered as the inhibition of CH₄ oxidation by the high content of CO₂. The reason is, the high concentration of CO₂ can suppress the forward reaction of H + O₂ \leftrightarrow O + OH during combustion.

27th ICDERS - July 28th - August 2nd, 2019 - Beijing, China

Figure 2. Components profiles with increasing temperature under (a) fuel-lean condition ($\Phi = 0.5$, case 1 and case 2 in Table 1), and (b) fuel-rich condition ($\Phi = 1.43$, case 3 and case 4 in Table 1). Comparison between experimental data (symbols) and model predictions (lines).

Figure 2 also shows the experimental and numerical results of the concentrations of NO and HCN and the NO reduction efficiency with temperature in N_2 and CO_2 atmospheres. Note that in the NO-reburning process, NO is not completely reduced to N_2 and may be converted to other nitrogenous contaminants. The concentrations of NO₂, N_2O , NH₃ and HCN are measured in the present experiment. It is found that the concentrations of nitrogen-containing components, with the exception of HCN, are always lower than 10 ppm during the reaction. Hence, the sum of the concentrations of NO and HCN is used as a standard for evaluating the reduction efficiency of NO. Equation (1) shows the definition of the NO reduction efficiency:

NO Reduction Efficiency (%) = $100\% \times (IFN - TFN) / IFN$ (1)

In Equation (1), IFN (initial fraction of N) represents the concentration of NO initially added, and TFN (total fraction of N) stands for the sum of the concentrations of NO and HCN. As shown in Figure 2, less than 30% of NO is reduced in both N_2 and CO_2 atmospheres under the fuel-lean condition, and the concentration of HCN is less than 20 ppm. However, under the fuel-rich condition (Figure 4b), the NO reduction efficiency can be greater than 30% in both N_2 and CO_2 atmosphere is significantly lower than that at the N_2 atmosphere when the reburning chemistry at the CO_2 atmosphere is significantly lower than that at the N_2 atmosphere and temperatures above about 1100 K at the CO_2 atmosphere. Especially, under the fuel-rich condition the NO reduction efficiency in the CO_2 atmosphere is reduced by about 50% compared with that in the N_2 atmosphere at temperatures above 1200 K. The inhibition of methane oxidation under high CO_2 concentrations can be responsible for the decrease of the NO reduction efficiency, because the reduced oxidation process results in only a small amount of hydrocarbon radicals (CH₃, HCCO, CH₂, etc.) that can take part in the NO-reburning reactions. In addition, with the decrease of the NO concentration more HCN is formed, which implies that HCN is an important intermediate in the NO reduction process.

To further analyze how the NO reburning occurs in different atmospheres, detailed simulation analyses of NO reduction pathways are conducted under the fuel-rich ($\Phi = 1.43$) condition at 1300 K in both N₂ and

Wenhao Li

CO₂ atmospheres with the normalized reaction rate of production (ROP). The detailed NO reduction paths are shown in Figure 3.

It can be seen from Fig. 3(a) that the NO reduction in the N₂ atmosphere mainly achieves through the following reaction. First, NO reacts with hydrocarbon radicals CH₃ and HCCO to form HCN, or reacts with HCCO and CH₂ to form HCNO, which is then decomposed into HCN. Then HCN is oxidized by O to form NCO, and NCO reacts with NO to form N₂ to achieve reduction of NO, or the realization of NO reduction adopts another path: NO first reacts with CH₂ to form HNCO, HNCO then reacts with H radicals to become NH₂, NH₂ reacts with NO to form NNH, and NNH finally decomposes into N₂ to achieve final reduction. From Fig. 3(b), it can be seen that the NO reduction in the CO₂ atmosphere mainly passes through the following reaction. First, NO reacts with CH₃ and HCCO to form HCN, or reacts with CH₃ to form H₂CN and then converts to HCN, Then HCN reacts with CH₃ to become CH₃CN, and CH₃CN is further oxidized to NCO by O. Finally, NCO reacts with NO to form N₂ to achieve reduction of NO.

(b) CO₂ atmosphere

Figure 3 NO reduction pathway diagram under fuel-rich condition (Φ =1.43) at 1300K.

Combined with the above analysis, it can be found that the NO reduction in N₂ atmosphere mainly passes through two paths: NO (\rightarrow HCNO) \rightarrow HCN \rightarrow NCO \rightarrow N₂ and NO \rightarrow HNCO \rightarrow NH₂ \rightarrow NNH \rightarrow N₂. And

the main path of NO reduction in the CO₂ atmosphere is: NO (\rightarrow H₂CN) \rightarrow HCN \rightarrow CH₃CN \rightarrow NCO \rightarrow N₂. Through further analysis we found that the CH₄ oxidation in a high concentration of CO₂ is mainly through CH₄ \rightarrow CH₃ (\rightarrow CH₂OH) \rightarrow CH₂O \rightarrow HCO \rightarrow CO \rightarrow CO₂, and the pathways of CH₄ \rightarrow CH₃ \rightarrow CH₂ \rightarrow HCO \rightarrow CO \rightarrow CO₂ and the pathways of CH₄ \rightarrow CH₃ \rightarrow CH₂ \rightarrow HCO \rightarrow CO \rightarrow CO₂ and CH₄ \rightarrow CH₃ \rightarrow C₂H₆ \rightarrow C₂H₅ \rightarrow C₂H₄ \rightarrow C₂H₃ \rightarrow C₂H₂ \rightarrow HCCO \rightarrow CO \rightarrow CO₂ are suppressed. So the generation of hydrocarbon radical CH₂ and HCCO is reduced, thereby inhibiting the reaction HCCO + NO \leftrightarrow HCNO + CO and CH₂ + NO \leftrightarrow HCNO + H so that the pathway of NO \rightarrow HCNO is suppressed and the pathway of NO \rightarrow H₂CN by reaction CH₃ + NO \leftrightarrow H₂CN + OH is strengthen ; At the same time, the inhibition of the main chain branching reaction HCN + O \leftrightarrow NCO + H, which weakens the pathway of HCN conversion to NCO thus strengthens the conversion of HCN \rightarrow CH₃CN; Finally, the inhibition of CH₂ radical generation also suppresses the reaction CH₂ + NO \leftrightarrow HNCO + H, which reduces the importance of NO \rightarrow HNCO \rightarrow NH₂ \rightarrow NNH \rightarrow N₂ in the CO₂ atmosphere.

4 Conclusions

In this paper, a jet-stirred reactor is applied to obtain new experimental results for the NO reduction by CH_4 in N_2 and CO_2 atmospheres. The differences in the reburning process between N_2 and CO_2 atmospheres are investigated experimentally and numerically. The following conclusions are drawn:

(1) The inhibition of CH_4 oxidation observed at high CO_2 levels in the experiment can be the reason for the lower NO reduction efficiency in the CO_2 atmosphere, because the slower oxidation process resulting in only a small amount of hydrocarbon radicals (CH_3 , HCCO, etc.) can be used to reduce NO in reburning.

(2) The NO reduction in the N₂ atmosphere mainly passes through two pathways: NO (\rightarrow HCNO) \rightarrow HCN \rightarrow NCO \rightarrow N₂ and NO \rightarrow HNCO \rightarrow NH₂ \rightarrow NNH \rightarrow N₂. And the main path of NO reduction in the CO₂ atmosphere is: NO (\rightarrow H₂CN) \rightarrow HCN \rightarrow CH₃CN \rightarrow NCO \rightarrow N₂.

References

[1] Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J, Rahiala S, Hyppänen T, Mletzko J, Kather A, Santos S. (2015). Oxyfuel combustion for CO_2 capture in power plants. International Journal of Greenhouse Gas Control. 40: 55.

[2] Smoot LD, Hill SC, Xu H. (1998). NO_x control through reburning. Prog. Energy Combust. Sci. 24: 385.

[3] Normann F, Andersson K, Leckner B, Johnsson F. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Prog. Energy Combust. Sci. 35: 385.

[4] Mendiara T, Glarborg P. (2009). Ammonia chemistry in oxy-fuel combustion of methane. Combustion and Flame. 156 : 1937.

[5] Gimenez-Lopez J, Aranda V, Millera A, Bilbao R, Alzueta MU. (2011). An experimental parametric study of gas reburning under conditions of interest for oxy-fuel combustion. Fuel Process. Technol. 92: 582.

[6] Meeks E, Grcar JF, Kee RJ, Moffat HK. (1996). AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions. Office of Scientific Technical Information Technical Reports.

[7] Glarborg P, Miller JA, Ruscic B, Klippenstein SJ. (2018). Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 67: 31.