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1 Introduction

There is a substantial collection of experimental evidence revealing that gaseous detonations consist of a
multidimensional wave complex coupled with a spatially non-uniform release of chemical energy. These
highly coupled wave and reaction dynamics determine the propagation behavior of gaseous detonation
waves, such as the propagation limit in the presence of losses. Various experimental studies have demon-
strated that detonations in highly unstable mixtures, i.e., those with a greater activation energy Ea, are more
resilient to losses than those in weakly unstable mixtures. [1–3] Numerical simulation results based upon
modeling an inviscid flow (described by the Euler equations), however, indicate that detonations governed
by a greater Ea are more vulnerable to losses, which contradict the experimental findings. [2–5]

An explanation to reconcile these paradoxical findings has been conjectured: Within a highly unstable det-
onation complex, the combustion of a significant proportion of the reactive gases is governed by diffusive
processes, rather than a shock-induced ignition; the Euler equations for an inviscid flow are thus inadequate
to describe such diffusion-controlled combustion processes. [3] If this conjecture is true, refining the compu-
tational grid of a simulation based on the Euler equations would reduce the effect of numerical diffusion, and
thus, impedes the energy release of a highly unstable mixture, resulting in a less resilient detonation to losses.
In order to verify this conjecture, it is necessary to quantitatively examine the detailed spatial distribution of
reaction rate within an unstable detonation wave complex. Using a combination of schlieren photographs
and planar laser-induced fluorescence of OH radical, more detailed features of the reaction-zone structure
of gaseous detonations have been revealed. [6–9] To experimentally obtain quantitative information on the
spatial distribution of reaction rate, however, remains challenging. Since the complete flow-field data of
gaseous detonations can be obtained via computational simulations, it is possible to perform more in-depth
analysis on numerical results.

In this study, a framework of statistical analysis is proposed and performed to describe the reaction-zone
characteristics of unstable gaseous detonations. The probability of the occurrence of a certain amount of
gas reacting at a rate ω̇ and a distance relative to the location of the leading shock front is calculated. The
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probability functions of reaction rate resulting from two-dimensional simulations are compared with those
of the corresponding ZND solutions. The objective of this study is to probe the diffusive effects on the
statistical nature of the detonation reaction-zone dynamics. The effective diffusivity in the simulations can
be varied via changing the physical diffusivity in a model based on the Navier-Stokes equations or refining
the computational grid of an Euler-equations-based simulation. In this abstract, only the results of the
simulations based on the Euler equations are presented.

2 Problem description

The reactive system consists of an inviscid, calorically perfect gas (i.e., with a constant ratio of specific heat
γ). The gasdynamics of this system is described by the two-dimensional reactive Euler equations with flow
and state variables non-dimensionalized with respect to the pre-shock, initial state. In this study, the reaction
rate ω̇ is governed by single-step Arrhenius chemical kinetics as follows,

∂Z

∂t
= −ω̇ = −kZExp (−Ea/T ) (1)

where Z is the dimensionless reaction progress variable that varies from 1 (unreacted) to 0 (completely
reacted), k is the pre-exponential factor, and Ea is the activation energy non-dimensionalized with respect
to the pre-shock, initial state. Five different values of activation energy, i.e., Ea = 10, 20, 30, 40, and 50
with a dimensionless energy release Q = 50 and a ratio of specific heat capacities γ = 1.2 are considered
in this study. For each Ea, a specific value of k is selected so that the half-reaction-zone length l1/2 of the
corresponding ZND wave profile is of unity length. A spatially second-order accurate MUSCL-Hancock
scheme with an approximate HLLE solution to the inter-cell Riemann problem was utilized to solve the
governing equations. This solver is implemented on a CUDA-enabled parallel-processing platform using
general-purpose graphic processing units (GPGPUs). [5, 10, 11]

The computational domain is an 80×80 square. The simulations are performed in a wave-attached reference
frame via imposing an inflow at the Chapman-Jouguet (C-J) velocity (−DCJ) along the right boundary of
the domain. The detonation is initiated via the compression of a blast wave generated by a high-pressure
zone initially placed in the flow. A two-dimensional, sinusoidal perturbation in density is introduced next
to the initial high-pressure zone to facilitate the development of transverse instabilities. Statistical analysis
is performed to the fully developed wave structure after the wave front has propagated over approximately
500 times the ZND half-reaction-zone length.

3 Sample results

Some sample numerical schlieren graphs for the cases with Ea = 20 and 50 are shown in the first and
second row of Fig. 1, respectively. Each column of Fig. 1 corresponds to the simulations at a specific
numerical resolution. The cases with Ea = 20 result in a typical wave structure of regular or weakly
unstable detonations. A more irregular wave structure arises from the cases with Ea = 50. Although finer
features are captured near the leading shock front, the global wave structure for Ea = 20 does not exhibit
any significant change as the resolution is increased from 50 to 100 computational grid points per the ZND
half-reaction-zone length. However, for Ea = 50, larger pockets of slowly reacting gases indicated by the
dark gray areas can be observed as the resolution is increased to l1/2/∆x = 100.
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Ea = 50

Ea = 20

l1/2 /Δx = 25 l1/2 /Δx = 50 l1/2 /Δx = 100

Figure 1: Sample simulation results of schlieren graphs for the cases with Ea = 20 and 50 at numerical
resolutions of 25, 50, and 100 computational grid points per the ZND half-reaction-zone length.

4 Statistical analysis

4.1 Methodology

To obtain the probability distribution, the probability mass for two variables, reaction rate ω̇ and location in
the propagation direction of the detonation wave x, is counted. The range considered for each of these two
variables are divided into discrete intervals (or “bins”). The indices for the discrete intervals of ω̇ and x are
i and j, respectively. For a computational grid point at a position (X,Y ), the local reaction rate ω̇(X,Y )
and X-coordinate falls into the bin of ω̇i and xj if the following criteria are satisfied,

log10(ω̇i)− dE/2 < log10(ω̇(X,Y )) ≤ log10(ω̇i) + dE/2 (2)

xj − dx/2 < X ≤ xj + dx/2 (3)

where E is the exponent of the value of ω̇(X,Y ) on the basis of a decadic logarithm, i.e., ω̇(X,Y ) = 10E ,
and dE and dx represent the bin size of ω̇ and x, respectively. The occurrence of a data point to ω̇i and xj is
counted with the weight of the remaining reactant at this point. Thus, the probability mass mi,j is counted
as follows,

mi,j =

Ni,j∑
k

ρkZk (4)
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where Ni,j is the total number of data points that fall into the bin of ω̇i, and xj and k is the index of each of
these data points. The total mass over the considered range of ω̇ and x can be calculated as follows,

M =
∑
i

∑
j

mi,j (5)

The probability Pm(ω̇, x) and probability density function (p.d.f.) fm(ω̇, x) can be calculated as follows,

Pm(ω̇i, xj) = mi,j/M (6)

fm(ω̇i, xj) = Pm(ω̇i, xj)/(dEdx) (7)

where subscript “m” denotes that the probability is weighted by the mass of the remaining reactant. Ac-
cording to the sum rule of probability functions, the probability and p.d.f. of only ω̇ can be obtained as
follows,

Pm(ω̇i) =
∑
j

Pm(ω̇i, xj) (8)

fm(ω̇i) = Pm(ω̇i)/dE (9)

Via detecting the position of the leading shock front in each snapshot collected over time, the p.d.f. of
shock front position f(xs) can be obtained. Note that the p.d.f. of shock front position does not have to
be weighted by the mass of reactant since the flow in front of the shock front is uniform—the material
processed by the leading shock is of the same density.

4.2 Statistical results and discussion

The probability density functions fm(ω̇, x) resulting from the two-dimensional simulations are shown as
the upper subfigures of Fig. 2. The lower subfigures of Fig. 2 are the corresponding p.d.f of shock front
position. For all of these three cases, the yellow regions in the contour plots of fm(ω̇, x) are located within
the vicinity of where the corresponding f(xs) peaks. For Ea = 10, the significant reaction spans over a
range of approximately 10−2 < ω̇ < 100; as Ea increases to 50, the significant reaction range in ω̇ expands
to approximately 10−4 < ω̇ < 101. Note the simulation results analyzed in this section are obtained from
the simulations with a resolution of l1/2/∆x = 50.

The mass-weighted p.d.f. of only ω̇ for the simulation results with Ea = 10, 30, and 50 are shown in
Fig. 3. The gray curves are the fm(ω̇) based on a snapshot of the flow field at a specific time, and the
orange curve is the fm(ω̇) averaged over a period of 30 units of time, which comprises 150 snapshots with
an equal interval of 0.2 unit of time. The blue curves are the corresponding fm(ω̇) for the ZND solution.
For Ea = 10, the p.d.f. corresponding to each snapshot is very close to the time-averaged p.d.f.; the p.d.f.
resulting from the simulations spans over approximately the same range of reaction rate as that of the ZND
solution does. As Ea increases, the p.d.f. of the snapshots significantly fluctuate around the time-averaged
p.d.f., and the range of ω̇ covered the p.d.f. of the simulation data is boarder than that covered by the ZND
solution. For the case with Ea = 50, the peak of fm(ω̇)—indicating at which rate the most of the material
reacts—is smaller than that of the ZND solution by one order of magnitude. This statistical results provide a
quantitative measurement of how much material undergoes a significantly slow reaction. How the statistical
behavior of slow reaction is affected by the artificial or physical diffusivities will be examined within the
complete scope of this study.
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(a) (b) (c)Ea = 10 Ea = 30 Ea = 50

Figure 2: The statistical results for the simulation data with Ea = 10, 30, and 50: (upper row) the reactant-
mass-weighted probability density function of reaction rate and position in the propagation direction of the
detonation wave, i.e., fm(ω̇, x); (lower row) the p.d.f. of shock front position, i.e., f(xs).

5 Concluding remarks

A framework of methodology to probe the statistical characteristics of the reaction-zone dynamics arising
from two-dimensional unstable detonations has been proposed in this study. Via this statistical analysis,
the probability distribution of various reaction rates that the reactive material undergoes within a detonation
wave complex can be quantitatively measured and presented. This analysis will be used to gain further
insights into the governing combustion mechanisms of unstable gaseous detonations.
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Figure 3: The reactant-mass-weighted probability density function of reaction rate, i.e., fm(ω̇), for the cases
with Ea = 10, 30, and 50.
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