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1 Introduction

Oblique detonations are ubiquitous in supersonic propulsion applications [1]. The strong nonlinear char-
acter of the flow hinders associated experimental and computational investigations. As a result, despite
significant research efforts, many aspects of the formation, dynamics, and stability of oblique detonations
remain unclear. Simplified models can be instrumental in understanding the complicated physicochemical
interactions that determine the detonation response. The present work exploits simplifications arising in
weakly exothermic detonations when the post-shock conditions are supersonic, leading to a compact formu-
lation involving ordinary differential equations to be integrated along prescribed characteristic lines. The
resulting formulation, similar to that used recently to analyze diffusion-flame ignition by impingement of
a shock wave on a mixing layer [2, 3], can be used to investigate a wide range of oblique-detonation prob-
lems involving finite-rate effects, and is used here to investigate the structure of wedge-induced oblique
detonations [4].

2 Jump conditions across oblique detonations

The well-known ZND structure of oblique detonations, schematically represented in Fig. 1, involves a lead-
ing shock wave followed by a reaction region. In the notation employed, flow properties upstream from the
shock will be denoted by the subscript u, whereas the subscript o will be used for the gas state immediately
downstream from the shock and the subscript b will be used for the final equilibrium burnt-gas properties.
For an oblique detonation with incident angle σ and incident Mach number Mu the changes in density ρ,
pressure p, temperature T , and Mach number M from the upstream values as well as the counterclockwise
flow deflection ν can be computed with use made of the Rankine-Hugoniot equations [5]. The conditions
immediately behind the chemically-frozen shock are given by the simplified equations

ρo
ρu

= Fρ(Mu, σ) =
(γ + 1)M2

u sin2 σ

(γ − 1)M2
u sin2 σ + 2

, (1)
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= Fp(Mu, σ) =
2γM2

u sin2 σ + 1− γ
γ + 1

, (2)
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Figure 1: Schematic view of the jump conditions across an oblique shock, and coordinate system and
characteristic lines of the flow.

To
Tu

= FT (Mu, σ) =
[2γM2

u sin2 σ + 1− γ][(γ − 1)M2
u sin2 σ + 2]

(γ + 1)2M2
u sin2 σ

, (3)

Mo = FM (Mu, σ) =
1

sinφo

[
2 + (γ − 1)M2

u sin2 σ

2γM2
u sin2 σ + 1− γ

]1/2

, (4)

νo = Fν(Mu, σ) = tan−1

{
2(M2

u sin2 σ − 1) cotσ

2 +M2
u [γ + cos(2σ)]

}
, (5)

where γ is the specific-heat ratio, and the angle φo = σ−νo appearing in Eq. (4) measures the inclination of
the post-shock stream with respect to the shock. For weakly exothermic detonations with small heat release
per unit mass of gas mixture Q the relative variations of all flow properties across the reaction region and
the associated deflection of the streamlines are small, as can be seen by the linearized relations

− ρb − ρo
ρo

= −(pb − po)/po
γM2

o sin2 φo
=

(Tb − To)/To
1− γM2

o sin2 φo
=

νo − νb
cosφo sinφo

=
Q/(cpTo)

1−M2
o sin2 φo

. (6)

of order q = Q/(cpTo)� 1, where cp is the specific heat at constant pressure.

3 Reduced Formulation for Small Heat Release

Equations will be written for the small flow departures from a predetermined base flow, defined by the
constant incident angle σ̄ and the upstream values of the Mach number M̄u, pressure p̄u, temperature T̄u,
and density ρ̄u. Corresponding post-shock properties for this base solution are given, in terms of Eqs. (1)–
(5), by

T̄o
T̄u

= FT (M̄u, σ̄),
p̄o
p̄u

= Fp(M̄u, σ̄),
ρ̄o
ρ̄u

= Fρ(M̄u, σ̄), M̄o = FM (M̄u, σ̄), ν̄o = Fν(M̄u, σ̄)

(7)
The post-shock velocity can be evaluated in terms of M̄o and T̄o with use made of Ūo = M̄o((γ−1)cpT̄o)

1/2.
Since the flow deflection across the reaction region is small, the streamlines are almost exactly aligned with
the post-shock unperturbed flow, thereby motivating the use of the cartesian coordinate system of Fig. 1,
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with the streamwise coordinate s and the transverse coordinate n scaled with the induction length Ūoti
based on the characteristic induction time ti at temperature T̄o. The origin of the reference frame lies at the
leading shock. The associated streamwise and transverse velocity components will be denoted by U and V ,
with the latter related to the flow deflection by V/Ūo = ν − ν̄o. In the limit q � 1, the chemical reaction
results in small relative variations of the different flow variables, which can be described with the linearized
form of the governing equations, including the continuity, momentum, and energy conservation equations

∂ρ̂

∂s
+
∂Û

∂s
+
∂V̂

∂n
= 0 (8)

γM̄2
o

∂Û

∂s
+
∂p̂

∂s
= 0 (9)

γM̄2
o

∂V̂

∂s
+
∂p̂

∂n
= 0 (10)

∂T̂

∂s
− γ − 1

γ

∂p̂

∂s
= Ω, (11)

written in terms of the dimensionless order-unity perturbation variables

ρ̂ =
(ρ− ρ̄o)/ρ̄o

q
, p̂ =

(p− p̄o)/p̄o
q

, T̂ =
(T − T̄o)/T̄o

q
, Û =

(U − Ūo)/Ūo
q

, and V̂ =
V/Ūo
q

. (12)

The above equations must be supplemented with the equation of state written in the linearized form

p̂ = ρ̂+ T̂ , (13)

considering constant mean molecular weight, an appropriate simplification for reactant mixtures satisfying
q � 1. The problem is simplified by eliminating Û and ρ̂ with use made of Eqs. (8), (9), and (13) to give

γM̄2
o − 1

γM̄2
o

∂p̂

∂s
− ∂T̂

∂s
+
∂V̂

∂n
= 0. (14)

Besides, since the dimensionless heat-release rate Ω (scaled with ρ̄oQ/ti) depends on the local composition,
the solution requires simultaneous integration of the evolution of species along the streamlines n = constant,

∂Yi
∂s

= −ωi/(ρ̄o/ti), (15)

where Yi and ωi(T̂ , Yi) are the mass fraction and the mass consumption rate of chemical species i. For a
chemically-frozen shock, the boundary conditions at the shock reduce to the upstream mass fractions Yiu
in the incoming stream. While the formulation is compatible with detailed chemical-kinetic mechanisms,
a simple irreversible Arrhenius reaction that releases an amount of heat Q per unit mass of gas mixture
suffices in many cases to describe the nonlinear effects associated with the strong temperature sensitivity of
the reaction,

ω = ρBY exp

(
− Ea
RoT

)
, (16)

in terms of the density ρ, temperature T , and reactant mass fraction Y . Here B is a preexponential factor,
Ro is the universal gas constant, and Ea is the activation energy. The following description considers the
particular case of large values of the dimensionless activation energy such that

Ea
RoT̄o

∼ q−1 � 1, (17)
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for which temperature variations of order q result in reaction-rate changes of order unity. In writing the
temperature dependence of the reaction rate use is made of the familiar Frank-Kamenetskii linearization
involving the reduced activation energy β = (Ea/R

oT̄o)(Q/cpT̄o), an order-unity parameter in the dis-
tinguished limit defined in Eq. (17). The reaction-rate in (16) provides the characteristic induction time
ti = B−1 exp

(
Ea/R

oT̄o
)

used in scaling s and n, reducing the heat-release rate to Ω = y exp(βT̂ ) and the
reactant conservation equation (15) to

∂y

∂s
= −Ω = −yeβT̂ , (18)

where y = Y/Ȳu. The boundary condition for the reactant mass fraction behind the chemically frozen
shock reduces to y = yu, where yu = Yu/Ȳu differs from unity for nonuniform incoming composition.
Equations (10), (11), (18), and (14) constitute a set of conservation equations for T̂ , p̂, y, and V̂ . The change
of the incident angle σ̂ = (σ − σ̄)/q ∼ 1 is an additional variable of the problem, which enters through the
boundary conditions at the leading shock. These can be determined by linearizing the Rankine-Hugoniot
Eqs. (2), (3), and (5) to give

T̂ = T̂u +AT M̂u +BT σ̂, p̂ = ApM̂u +Bpσ̂, V̂ = AνM̂u +Bν σ̂ (19)

involving the coefficients

AT =
1

FT

∂FT
∂Mu

, BT =
1

FT

∂FT
∂σ

,Ap =
1

Fp

∂Fp
∂Mu

, Bp =
1

Fp

∂Fp
∂σ

,Aν =
∂Fν
∂Mu

, Bν =
∂Fν
∂σ

, (20)

to be evaluated at Mu = M̄u and σ = σ̄. For generality, the jumps described by Eq. (19) account for the
possible existence of small fluctuations of order q in the Mach number and temperature of the approaching
stream, described by the known order-unity functions T̂u = [(Tu − T̄u)/T̄u]/q and M̂u = (Mu − M̄u)/q.

The solution simplifies when the post-shock flow is supersonic, i.e. M̄o > 1, condition given for certain
values of M̄u and σ̄. The Euler equations can be formulated in characteristic form, with three different
characteristic curves crossing any given point, i.e. the streamline and the two Mach lines C±, crossing the
streamline with local angles ±µ with µ = sin−1

(
M−1

)
[6]. For weakly exothermic detonations, all three

families of characteristics are straight lines with fixed inclination angles, be the streamlines n = constant,
and Mach lines given byC± : s−n/tan φ̄o. The condition that the normal component of the velocity behind
the shock is subsonic, implies that µ̄o > φ̄o, so that the C+ characteristics always reach the shock, while
the C− characteristics originate there. The problem can be formulated in characteristic form by combining
Eqs. (10), (11) and (14) to give

∂I±

∂s
± 1√

M̄2
o − 1

∂I±

∂n
=

γM̄2
o

M̄2
o − 1

Ω (21)

for the characteristic variables I± = p̂± γM̄2
o√

M̄2
o−1

V̂ . Using p̂ = (I+ + I−)/2 in (11) provides

∂T̂

∂s
− γ − 1

2γ

∂

∂s
(I+ + I−) = Ω, (22)

which, together with Eqs. (18), and (21) are the basis for the description of the supersonic post-shock flow in
two-dimensional, steady, weakly exothermic detonations. The integration of Eq. (22) along the streamlines
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Figure 2: Schematic view of the problem arising in the interaction of a detonation and a wedge wall.

and of Eq. (21) (minus) along the C− characteristics is initiated at the shock s = n/ tan φ̄o, where the
values of T̂ and I− depend on the value of I+ reaching the shock from below. The derivation of the post-
shock expressions for T̂ and I− begins by using the relations given in Eq. (19) to relate the values of the
characteristic variables I± at the shock with the perturbations of upstream Mach number and incident angle

I+ = A+M̂u +B+σ̂ and I− = A−M̂u +B−σ̂ (23)

where

A± = Ap ±
γM2

o√
M2
o − 1

Aν and B± = Bp ±
γM2

o√
M2
o − 1

Bν . (24)

The first equation in (23) can be used to provide σ̂ = −(A+/B+)M̂u + (1/B+)I+ for the local incident
angle as a function of the value of I+ reaching the shock from below. Which used in (19) and (23) yields
the expressions relating the post-shock values of T̂ and I− with I+,

T̂ = T̂u +

(
AT −

BT
B+

A+

)
M̂u +

BT
B+

I+, I− =

(
A− − B−

B+
A+

)
M̂u +

B−

B+
I+. (25)

4 Sample Computations

As an illustrative example, the above formulation is used to analyze the establishment of an oblique deto-
nation at a wedge, defined by a given deflection angle. With the origin of the reference frame located at
the impingement point, as indicated in Fig. 2, the solution involves a reflection condition at the wall n = 0,
such that no flux can traverse the wedge V̂ = 0, or in the characteristics formulation I+ = I−. The problem
reduces to the integration of Eqs. (21), (22), and (18) with initial values T̂ = BT

B+ I
+, I− = B−

B+ I
+, y = 1

at the shock s = n/ tan φ̄o and of Eq. (21) with the initial value of I+ = 0. Sample temperature distribu-
tions are plotted in Fig. 3 for M̄u = 2.5, σ = 50o. The calculations reveal changes in the character of the
solution associated with increasing values of the activation energy β, with the smooth transitions found for
small values of β being replaced by cell-like oscillatory structures for larger values of β, reminiscent of the
cellular structures observed in wedge-induced problems [4]. Eventually leading to the formation of a triple
point at the leading shock, as β increases.
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Figure 3: Temperature distributions behind the shock for a detonation with M̄u = 2.5 and σ = 50o. Note
that different domains are considered to correctly depict each steady solution.
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