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1 Introduction 

Theoretical and numerical studies of the stability of Zeldovich-von Neumann-Doring (ZND) solution 
describing a stationary detonation wave (DW), as well as pulsating modes of DW propagation, go back to 
the works of Erpenbeck [1] and Fickett [2]. A large number of subsequent fundamental studies of 
pulsating DW are associated with the use of a single-stage model of the kinetics of chemical reactions. On 
the one hand, this is due to the considerable degree of development of this model, the well-established 
methodology of transition to dimensionless variables using the length of the half-reaction and a large 
amount of accumulated material. On the other hand, it is known that this model is able to describe the 
main features of nonlinear dynamics of DW propagation such as one-dimensional pulsations, two-
dimensional detonation cells and three-dimensional spin. Among the disadvantages of the model is the 
impossibility of explicit separation of the induction and reaction zones, which was a background for the 
creation of two-stage models of kinetics. Apparently, V.P. Korobeinikov, V.A. Levin, V.V. Markov and 
G.G. Chernyi [3] were pioneers in this area. Important results concerning the stability conditions of DW 
propagation in the framework of the two-stage kinetic model were obtained in [4]. The non-dimensional 
parameter defined as the dimensionless activation energy for the induction process multiplied by the ratio 
of the induction length to the reaction length was introduced. 

The aim of this work is the further clarification of the dynamics of pulsating DW in the framework of the 
two-stage model of kinetics by considering the problem in the shock-attached frame. There are two major 
numerical approaches for study of detonation in the shock-attached frame, namely [5] and [6], as well as a 
number of further modifications and developments, such as [7]. We will follow the ideology [5]. This 
approach is one-dimensional although some attempts to transform it to a two-dimensional one were made 
in [8] or more recently in [9]. 

2 Mathematical Model and Statement of the Problem 
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Mathematical model is based on the reactive Euler equations coupled with the two-stage model of 
kinetics. The governing system is written in the shock-attached frame ( , )x t : 
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Here D  is the leading shock speed, ρ  is the density, p  is the pressure, v  is the velocity of gas in the 
laboratory frame, e  is the total energy density, iλ  is the variable of the induction zone progress which 
equals 1 in reactants and 0 in the end of the induction zone, rλ  is the variable of the reaction zone 
progress which equals 0 in the induction zone and reaches 1 in products, H is the Heaviside step function, 

iK  and rK  are the reaction rate constants in the induction and reaction zones respectively,  is the 
activation energy, Q  is the heat release, k  is the reaction order in the reaction zone, γ  is the heat 
capacity ratio. It is supposed that the gas obeys the ideal gas state equation.  

The system of governing equations (1) is made dimensionless in accordance with [10]. Von Neumann 
parameters sρ  and sp  are used as characteristic density and pressure, 1 2( )s s sv p ρ=  is used as the 
velocity scale. The length scale is chosen to be equal to the induction zone length ( )i CJ s iD v tΔ = − , where 

CJD  is the Chapman-Jouguet (CJ) velocity, it  is the induction time. 

 
 

Figure 1. The leading shock wave (LSW) propagation in a low-frequency regime with different resolutions of 
induction zone: green line – 32 cells, blue line – 64 cells, violet line – 128 cells, red lines – 256 cells. 

The interval [ ;0]L−  is considered as the computational area. On the rear left end of the computation 
domain x L= −  different boundary conditions are imposed including CJ conditions, extrapolation of zero 
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order and non-reflecting boundary condition [5]. On the right end of domain the boundary conditions 
respond to Rankine-Hugoniot conditions on the shock, see the next Section. The grid is uniform with the 
resolution 128 cells per induction zone. This resolution was chosen after the grid convergence study (see 
Fig. 1) with the use of the maximum values of activation energy and heat release used in this research 
which respond to the low frequency regime, see section 4. The total number of computational cells is 
denoted as N . ZND-solution is used as an initial condition. 

3 The Algorithm for the Shock Speed Calculation 

The computational algorithm is based on the principal of splitting by physical processes. Firstly, the gas 
dynamics equations are integrated on the time step with no chemical reactions taken into account ( )s = 0 . 
The spatial discretization of the governing system is performed using finite volume method. On this 
hyperbolic step Courant-Isaacson-Rees numerical scheme in conservative formulation of the second 
approximation order is applied. On the second step the chemical reactions are considered without 
convection terms. Such system is solved with the use of explicit Euler method. The numerical algorithm in 
general follows [7]. 

The shock-attached frame formulation of the governing equations leads to the modification of the 
numerical flux which includes now the unknown LSW speed 1nD +  from the next time layer. The 
additional equations on the C+-characteristics to calculate 1nD +  are derived from the characteristic form of 
the governing system: 
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This system is discretized according to [5] under the assumption of local linear approximation of the 
characteristic curve C+ (see Fig. 2): 
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The unknown *
nx  is found from the first equation of (3). Gas velocity *

nv  and sound velocity *
nc  at the point 

*( , )n nx t  are expressed with the use of linear interpolation between points (0, )nt  and ( , )n n
Nx t .The new 

LSW speed 1nD +  is determined from the second equation of (3). All unknown values on the ( 1)n + -th 
time layer are expressed using the LSW Mach number 1nM +  with the use of Rankine-Hugoniot 
conditions: 
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where 0P , 0R  and 0C  are pressure, density and sound velocity before the DW. The gas is considered to be 
quiescent before the DW. Thus, the second equation in the discretized system is solved relative to 

1nM +  using Newton iterations. Obtained shock speed 1nD +  is used then for the numerical flux calculation. 
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Figure 2. The sketch to the algorithm of the LSW speed equation integration 

4 Pulsating Detonation Wave Simulation 

We now consider four sets of parameters from [10] that correspond to the very high frequency regime 
(VHF), high frequency regime (HF), low frequency (LF) and transient (T) regimes of oscillations (see 
Tab. 1). It can be noted that the choice of the activation energies and rate constants of the reaction zone for 
each regime is based on the fact that such regimes are close to the neutral stability boundary. 

Table 1: Test cases parameters 

Regime aE  Q  rK  ν  γ  

VHF 1.0 10.3875 2.1 0.5 1.2 
HF 5.0 2.789 3.2 0.5 1.2 
LF 10.0 10.3875 0.15 0.5 1.2 
T 5.0 10.3875 0.37 0.5 1.2 

 
                                                          (a)                                                                     (b) 

Figure 3. LSW pressure dynamics for (a) VHF and (b) HF regimes of pulsating DW propagation with zero-order 
extrapolation used as rear boundary conditions. Red curves – authors’ simulations, black ones – simulations from 
[10]. N = 2560, L = 20. 
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                                                         (a)                                                                       (b) 

Figure 4. LSW pressure dynamics for (a) T and (b) LF regimes of pulsating DW propagation with zero-order 
extrapolation used as rear boundary conditions. Red curves – authors’ simulations, black ones – simulations from 
[10]. N = 12800, L = 100. 

 

 
                                                         (a)                                                                       (b) 

Figure 5. LSW pressure dynamics for (a) LF (N = 12800, L = 100) and (b) HF (N = 2560, L = 20) regimes of 
pulsating DW propagation with different rear boundary conditions. Red curves correspond to zero-order 
extrapolation, green ones – to CJ conditions. 

Fig. 3 illustrates these regimes of oscillations calculated using our technique in comparison with the data 
from [10]. It can be observed that VHF (period of pulsations is less than induction time) and HF (period of 
pulsations is greater than induction time but comparable to it) regimes on Fig. 3a and Fig. 3b are in good 
accordance with [10]. The periods of oscillations are equal and the amplitude of pulsations is slightly 
higher than in [10] due to the absence of LSW numerical smearing in the shock-attached frame 
simulations. For LF and T regimes some differences are visible. First of all, although the amplitude of 
pulsations in T regime calculated by authors matches the data from [10], the period of oscillations in our 
simulations tends to be almost twice as great as in [10], see Fig. 4a. Secondly, there is a considerable 
difference in the amplitude of pulsations of the LF regime while the period of oscillations is almost the 
same as in [10], see Fig. 4b. Such differences may be caused by the differences in the method of 
simulation, the length of the computational domain and the choice of the rear boundary conditions.  
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Elongation of the computational domain length up to 750 units confirms the obtained result. Fig. 5 shows 
that rear boundary condition does not play significant role in the resulting mode of detonation propagation 
within this problem.  

5 Conclusions 

The computational algorithm was proposed for the simulation of detonation wave propagation using two-
stage kinetics model in the shock attached frame. The algorithm was applied for the simulation of four 
regimes of detonation propagation, namely very high frequency, high frequency, low frequency and 
transient regimes. Very high frequency and high frequency regimes correlate well with the data from [10]. 
There are discrepancies in amplitude and period of pulsations in low frequency and transient regimes in 
comparison with [10]. The obtained results were confirmed in simulations with variation of computational 
domain length and rear boundary conditions. 
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