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1 Introduction

The stability of two-dimensional shocks has been continuously investigated since the pioneering works of
D’Yakov [1] and Kontorovich [2]. It was found that, in certain conditions related to the Rankine-Hugoniot
slope, the shock oscillates permanently with the corresponding generation of entropic and rotational pertur-
bations downstream, as well as the emission of constant-amplitude sonic waves, the latter being commonly
referred as spontaneous acoustic emission (SAE).

Motivated by the dominant role of shock waves in supersonic aerodynamics, and also in Inertial Confinement
Fusion, there exists an exhaustive theoretical work on this subject [3–12], with the literature accumulated
on the Richtmyer-Meshkov Instability deserving special recognition. By way of contrast, non-adiabatic
waves have received considerably less attention, with regular detonations standing among any other type
of supersonic reactive front due to its direct application in propulsion engines and safety issues [13–18].
Further examples of non-adiabatic supersonic fronts are found in shocks that can induce a phase change on
its path [19, 20]. Hereafter the term non-adiabatic will comprise any type of energy gain or loss by the fluid
particles across the shock, e.g., reactive, dissociating, radiative or ionizing. The astrophysical context opens
a wide branch of possibilities for non-adiabatic waveforms, as are thermonuclear detonations formed in
type Ia supernovae [21, 22]. Other examples are found in core-collapse type II supernovae, where accretion
shocks become endothermic due to the nuclear dissociation process [23–25]. A distinctive common feature
of these two fronts is that energy variations may likely depend on thermodynamical absolute values.

As previously done by Bates [5] and Wouchuk [7], which predicted the possibility of DK-instability in gases
governed by van der Waals forces, the present study shows that permanent oscillations and SAE can occur
in exothermic strength-sensitive shocks. The possibility of highly-damped oscillations is also predicted in
endothermic configurations, a regime that was previously associated to nonideal gases [6]. In this work, the
problem formulation and its resolution are presented in a self-contained form. The methodology employs
linear perturbation analysis in the thin-shock limit, where the perturbation wavelength λ′ = 2π/k′ is much
larger than the shock thickness `, which comprises the precursor adiabatic shock and the following reacting
layer. The model also assumes the isolated-shock setup and the steady-state condition in the background
variables. Therefore, the instability threshold resulting from unsteadiness [26] and/or piston-driving effects
[11] are not considered.
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2 Problem formulation

It is defined an isolated shock whose relative speed with respect to the upstream flow is u′1 > a′1, where the
speed of sound is modeled with the perfect gas equation of state a′21 = γ p′1/ρ

′
1. The subscripts 1 and 2 will

refer to upstream and downstream dimensional flow properties that include: velocity u′, density ρ′, pressure
p′, and enthalpy h′. The energy conservation equation then reads

γ

γ − 1

p′1
ρ′1

+
u′21
2

+ ∆h′0 =
γ

γ − 1

p′2
ρ′2

+
u′22
2
. (1)

The factor ∆h′0 defines the energy per unit mass delivered to the fluid particles in case of considering
exothermic effects (∆h′0 > 0) or the energy per unit mass subtracted to the fluid particles when endothermic
effects are considered (∆h′0 < 0). This term is conveniently scaled with the upstream speed of sound to
yieldH0 =

(
γ2 − 1

)
∆h′0/

(
2a′21

)
as the dimensionless order-of-unity energy change.

When the energy variation across the shock depends on the shock intensity, the amount of energy delivered
or taken from the fluid should be modeled according to the particular phenomenon taking place. It is found,
for example, that accretion shocks formed in CCSNe are able to break heavy nuclei and the energy employed
in the nuclear dissociation scales with the upstream energy flux [24]. Further examples of this kind can
found in supersonic fronts that induce phase change [19]. Thermonuclear detonations may also depend on
the shock intensity, as the amount of nuclei fused depends on density [21, 22]. Although the scaling of heat
release with the flow properties depends on the particular phenomenon considered, the upstream energy
flux is a good candidate since it involves both the preshock state and the shock intensity. For this case,
the dimensionless non-adiabaticity of the shock is modeled as H0 = ε(γ + 1)

[
2 + (γ − 1)M2

1

]
/4, with ε

being a constant parameter that represents the fraction of the incoming energy flux released to (ε > 0) or
taken from (ε < 0) the fluid particles.

The variation of the different flow variables across the shock is readily obtained through the streamwise
integration of the conservation equations, which yields

Rs =
ρ′2
ρ′1

=
u′1
u′2

=
(γ + 1)M2

1

(γ − κ)M2
1 + 1

(2)

for the mass compression ratio. The Mach number relative to the postshock flow is

M2 =
u′2
a′2

=

[
(γ − κ)M2

1 + 1

γM2
1(1 + κ) + 1

]1/2
, (3)

where the function κ =
[
(1−M−21 )2 − 4H0M−21

]1/2 contains the dimensionless non-adiabatic parameter
H0. The value of κ can be zero only in exothermic conditions H0 > 0. This condition is achieved at the
so-called Chapman-Jouget regime, namelyM−21 = 1 + (γ+ 1)ε

(
1−
√

1 + ε−1
)

. At this regime, the flow
behind the reacting shock is sonicM2 = 1, thereby decoupling the shock from downstream influences. The
corresponding Rakine-Hugoniot curve

Ps =
2γRs (Rs − 1) (1− ε)− (γ − 1)

[
R2

s (1− ε)− 1
]

2γ (Rs − 1)− (γ − 1) [R2
s (1− ε)− 1]

(4)

is written for convenience in the definition of the function Γs in (6).
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Figure 1: Sketch of the perturbed shock wave and the perturbation variables in the shock reference frame.

To study the evolution of the planar shock, it is assumed an initial ripple of the form ψs(t = 0) =
ψs0 cos(k′y′), with ψs0 being the initial amplitude, k′ its perturbation wavenumber, and y′ the coordi-
nate transverse to the shock direction, namely x′. The wavenumber is employed to scale the spatial and
temporal variables, x = k′x′, y = k′y′, and τ = a′2k

′t, the dimensionless shock ripple is defined as
ξs = ψs/ψs0, and the small factor ψs0k

′ is used to scale the perturbation variables downstream, namely
φ′(x, y, τ) = Φ′2

[
1 + ψs0k

′ φ̂(x, y, τ)
]
, with the function φ′ denoting the dimensional variables p′, ρ′, u′,

and v′. Correspondingly, the associated dimensionless variable φ̂ defines order-of-unity functions. The
base-flow factor Φ′ takes the form ρ′2a

′2
2 , ρ′2, and a′2, for pressure, density and velocity, respectively.

The formulation of the asymptotic problem calls for information about the burnt-gas governing equations,
i.e., the linear Euler equations, and the boundary conditions. One is given by the values at the shock
φ̂(x =M2τ) = φ̂s, which are determined by linearized Rankine-Hugoniot equations

ξ̇s (τ) =
Rs

Rs − 1

1− Γs

2M2
p̂s (τ) , (5a)

ûs (τ) =
1 + Γs

2M2
p̂s (τ) , (5b)

ρ̂s (τ) =
Γs

M2
2

p̂s (τ) , (5c)

v̂s (τ) = M2 (Rs − 1)
∂ξs
∂y

(τ) . (5d)

The function

Γs = u′22

(
∂p′2
∂ρ′2

)−1
=
γM2

1

R2
s

(
∂Ps
∂Rs

)−1
(6)

relates to the celebrated D’Yakov parameter [1, 2] and it reduces toM−21 in the adiabatic limit. The other
boundary condition is provided by the isolated-shock assumption, which translates into not considering the
effect of the acoustic waves reaching the shock from behind. For this condition to be true, the shock must
be sufficiently far from driving conditions, which always fulfills whenM1/Mcj ∼ 1. Besides, the linear
theory and the thin-shock assumptions set the following limits: `� ψs0 � k′−1, see Fig.1.
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3 Asymptotic shock dynamics

For the shock to spontaneously, and constantly, radiate acoustic waves downstream when τ � 1, it must
oscillate with a non-decaying amplitude with sufficiently high frequency, so that the acoustic wavenumber
vector points backwards in the shock reference frame. This condition is deduced anticipating that sonic
waves are functions of (ωaτ − kax). The dimensionless frequency ωa and wavenumber ka are obtained
from the adiabatic dispersion relation ω2

a = k2a + 1 along with the compatibility condition at the shock
ω = ωa −M2ka. It is readily seen that constant-amplitude perturbations take place for ω ≥

√
1−M2

2.

The most relevant information relative to the asymptotic behavior can be inferred from the Laplace Trans-
form of the shock ripple amplitude [6, 7], namely∫ ∞

0
ξs(r)e

−srdr =

√
s2 + 1 + σbs

s
√
s2 + 1 + σbs2 + σc

(7)

applied over the variable r = τ
√
M2

2 − 1, with the auxiliary factors defined as

σb =
1 + Γs

2M2
and σc =

RsM2

1−M2
2

1− Γs

2
. (8)

A complete derivation of the type of modes in (7) can be found in [27]. The condition that sets the limits
for stable oscillations is s = ±i, which occurs for σb = σc, which, in the temporal domain, translates into
damped oscillations whose asymptotic decaying rate is proportional to τ−1/2. Permanent oscillations at the
shock are found to happen when σb < σc, that is, when the imaginary poles in (7) lie outside the branch cut.
The asymptotic oscillation frequency is ω = Ω

√
1−M2

2, with

Ω2 =
2σbσc − 1

2
(
σ2b − 1

) [1−
√

4σc (σc − σb) + 1

2σbσc − 1

]
. (9)

As Ω ∼ 1 for σb < σc, the condition ω ≥
√

1−M2
2 is always satisfied within this regime. It implies

that permanent oscillations at the shock wave that moves free from external perturbations exhibit SAE. The
DK-stability limit depends on the local slope of the Rankine-Hugoniot curve in the postshock state. This is
commonly presented as a function of the D’Yakov–Kontorovich parameter [1, 2]

ϕrad =
M2

2 (Rs + 1)− 1

M2
2 (Rs − 1) + 1

, (10)

which separates the acoustically radiating from the non-radiating condition, with Γs = ϕrad being a condi-
tion similar to that σb = σc derived above. For σb > σc the shock front oscillates towards the asymptotic pla-
nar solution with an amplitude that decays in time with the power law τ−3/2. There exist, however, two dis-
tinguished scenarios: when σb > σc+1/(4σc) (or Λ < 0 as defined in [6]), the approach towards the asymp-
totic decay rate occurs faster than that occurring in regular conditions, namely σc + 1/(4σc) > σb > σc.
Regular conditions are associated to finite-strength shocks moving adiabatically in perfect gases. The limit
that distinguishes fast or regular damping can be also expressed as Γs = ϕdam [27], with

ϕdam =
RsM2

2 −
(
1−M2

2

)3/2√
1−R−1s

RsM2
2 + 1−M2

2

. (11)
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Figure 2: Left: asymptotic regimes as a function ofM1 and the corresponding non-adiabatic factors q and
ε, for γ = 4/3. The blue-shaded region corresponds to values ofM1 < Mcj (M2 < 1). Right: Shock
pressure peaks for four ε = 0.4, ε = 0, ε = −0.2275, and ε = −0.4 (circles).

The aforementioned regimes are computed for γ = 4/3 in Fig. 2 (left). The blue-shaded zones correspond
to values ofM1 <Mcj that lead supersonic flows downstream. For sufficiently weak shocks, the effect of
the shock intensity in the energy change is negligible and the constant contribution dominates the function
H0 ∼ ε(γ + 1)/2 ∼ ε. In this weak-shock limit, there is no room for stable oscillations as the limiting
curve σb = σc meets the boundaryM2 = 1. For finite-shock intensities, of the order ofM2

1 ∼ 2/(γ − 1),
the strength-sensitive contribution in H0 is no longer negligible and the curve σb = σc detaches from
the boundaryM2 = 1, then enabling the possibility of permanent oscillations for sufficiently exothermic
shocks. In the strong shock limit, M2

1 � 1, the constant contribution in H0 can be neglected so that
H0 ∼ ε(γ2 − 1)M2

1/4. The curve σb = σc approaches the adiabatic limit from the exothermic side. It
implies that strong shocks will lie in the permanent-oscillating regime when heat release is sensitive to
absolute properties like temperature or pressure, even for fairly small sensitivities. As previously reported
[14, 27], planar reactive shocks whose overall heat released is invariant to the shock strength are stable to
long-wavelength perturbations. Fig. 2 (right) shows the computations of the shock pressure perturbations
evaluated through Bessel functions (solution of the two-dimensional wave equation with periodic symmetry
in y) after solving the initial-value problem. Small changes in γ does not change the qualitative picture.

4 Conclusions

It is shown that the D’Yakov-Kontorovich instability is not uniquely restricted to shocks moving through
nonideal gases. Non-adiabatic effects can make the shock behave in well-distinguished regimes that includes
the stable oscillatory mode. An expected finding is that endothermic effects tend to attenuate the shock
oscillations. For sufficiently endothermic shocks, the shock vibrations exhibit a higher damping towards the
asymptotic decay rate τ−3/2. On the other side, exothermic transformations may induce constant-amplitude
vibrations when the amount of heat released is positively correlated to the shock strength, a distinctive
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feature of reactions that are density, pressure or temperature dependent. For sufficiently strong shocks, even
small sensitivities have been found to switch the shock dynamics to the permanent-oscillating regime and,
consequently, to radiate acoustic waves. For exothermic shocks, results may be applicable to detonations
whose net amount of heat release depends on the postshock state as long as the reaction zone does not exhibit
an unstable behavior. Otherwise, the inner structure must be taken into account in the computation of the
downstream flow-field. For endothermic scenarios, admitting the simplifications made in modeling the gas,
the finding may be suitable to nuclear dissociating, radiative or ionizing shocks. Whatever the scenario
considered, the limits defining the distinguished regimes should be adapted to include the particular non-
adiabaticity model, since others may not strictly scale with the upstream energy flux. Moreover, effects
neglected in this work, like are plausible base-flow unsteadiness and downstream coupling, should be also
considered in more realistic scenarios.

Acknowledgments

This work has been supported by the Ministry of Science (ENE2015-65852-C2-1-R) and Fundación Iber-
drola España (BINV-hBbhOeJQ).

References

[1] S.P. D’Yakov, The stability of shockwaves: Investigation of the problem of stability of shock waves in
arbitrary media, Zh. Eksp. Teor. Fiz. 27, 288–295 (1954).

[2] V.M. Kontorovich, On the stability of shock waves, Zh. Eksp. Teor. Fiz. 33, 1525–1526 (1957).

[3] N.C. Freeman, A Theory of the Stability of Plane Shock Waves, Phil. Trans. R. Soc. A. 228 341-362
(1955).

[4] G.R. Fowles and G.W. Swan, Stability of plane shock waves, Phys. Rev. Lett. 30, 1023–1025 (1973).

[5] J.W. Bates, The D’Yakov–Kontorovich instability of shock waves in real gases, Phys. Rev. Lett. 84,
1180 (2000).

[6] J.W. Bates and D.C. Montgomery, Initial-value-problem solution for isolated rippled shock fronts in
arbitrary fluid media, Phys. Rev. E 69, 056313 (2004).
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