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1 Introduction

The ignition delay time (IDT) is one of basic properties describing any flammable mixture and it is very im-
portant in process safety management. IDT is usually modeled with detailed reaction mechanisms (DRMs),
however those calculations might be very time consuming and DRMs are still being developed and refined.
The authors of the recent paper accumulated around 1800 IDTs from shock tube experiments for various
C1–C7 hydrocarbon–O2–Ar mixtures. This amount of points becomes sufficient for deployment of one of
Machine Learning algorithms - a deep neural network (DNN). Machine Learning is widely used in numer-
ous aspects of life, for instance: self-driving cars, handwriting recognition, anti-spam filtering, web search
and rating systems. Now it is becoming more popular in science as well. A DNN is based on an artificial
neural network which is inspired by the biological neural networks. The biggest advantage of DNNs is high
predictive power and flexibility of application. According to authors’ best knowledge IDTs have not been
yet modeled with a DNN. Hence, the goal of the recent paper is to introduce a new ignition delay time model
based on a DNN technique.

2 Model

A large data set of ignition delay times is collected for C1–C7 hydrocarbon-oxygen-argon mixtures (1789
points in total) from shock tube experiments [1–28]. The data set can be briefly summarized as follows:

• the collected IDT range is from 2.6 µs up to 2.11 ms;

• C1–C7 hydrocarbons are methane, ethane, ethene, acetylene, propane, propene, iso- and n-butane, 1-
and iso-butene, n-, neo- and iso-pentane, 1-pentene, n-hexane, 1-hexene and n-heptane;

• temperature range is 1022–2596 K, pressure 0.3–267 bar, EQR 0.06–4.0, argon molar fraction 54.5%–
99.93%.
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The DNN model is developed based on following assumptions:

• the whole dataset of 1789 examples is divided into train and test sets in a proportion of 80/20;

• the number of inputs is equal to 7 (fuel type, fuel molar fraction, oxygen molar fraction, argon molar
fraction, initial pressure (bar), initial temperature (K), inverse of initial temperature (1/K), one can
note that higher number of inputs is desirable from feature engineering point of view);

• the output is ignition delay time (µs);

• activation function for all hidden layers is hyperbolic tangent;

• identity function is used for the output layer.

The deployment of the model structure presented in Figure 1 (the number of hidden layers, the number of
nodes in each layer and the L2 regularization parameter [29]) is described in detail in the paper of Malik et
al. [30].

Figure 1: Deep neural network structure used in the present study

3 Results

The performance of the DNN model is measured by Mean Absolute Error (MAE) and the Pearson coefficient
(CORR), which measures linear correlation between two sets of values. CORR is defined as follows:

CORR(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(1)
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Figure 2: Predicted IDT vs. experimental IDT. Comparison of DNN model to Aramco 2.0 and San Diego
2014. Left: Experimental uncertainty is marked by the yellow area. Right: Experimental uncertainty is
taken into account in CORR and MAE calculations.
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where x and y are vectors of experimental and predicted ignition delay times, n is the sample size (size of
both samples is equal).

In Figure 2 the DNN performance on a test set is presented and compared to two well-known DRMs:
Aramco 2.0 [5,28,31–35] and San Diego 2014 [36]. In the left column of Figure 2 experimental uncertainty
range (assumed as IDT ± 15%) is marked by yellow area. Predictions belonging to the area are considered
as perfect match to experiment. In the right part of Figure 2 experimental uncertainty is taken into account
while calculating CORR and MAE. Additionally, in Table 1 the DNN model is compared with NUIG n-
Heptane [37] and GRI-mech 3.0 [38]. The DNN model reaches higher CORR and lower MAE than the best
DRMs’ (NUIG n-Heptane: MAE = 85 µs, CORR = 0.933, the DNN: MAE = 53 µs, CORR = 0.98, Table
1).

Table 1: Comparison of DNN model to DRMs.

Metric DNN Aramco 2.0 NUIG n-Heptane GRI-mech 3.0 San Diego 2014
without experimental uncertainties
CORR 0.949 0.899 0.902 0.645 0.847
MAE 108 160 136 599 143
with experimental uncertainties
CORR 0.980 0.928 0.933 0.648 0.920
MAE 53 105 85 547 84

4 Conclusion

The DNN model for IDT of C1–C7 hydrocarbon-oxygen-argon mixtures is developed. It results in lower
error than the best DRM (NUIG n-Heptane) and much shorter computational time (DNN: less than 1 ms,
NUIG n-Heptane: 2 min). The model can be easily extended to nitrogen diluted mixtures and to new ex-
perimental data as published. In the future work the model for ignition delay times from rapid compression
machines and for mixtures diluted with nitrogen will be developed.
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