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1 Introduction 

Reactive flows are ubiquitous in nature, from the forest fires on earth to the supernovae in deep space, and 
play a key role in human life and society [1]-[3]. Although great achievements have been made in the field, 
it remains a challenge to study complex reactive flows, especially when compressible, hydrodynamic and 
thermodynamic coupling effects are under consideration. Traditional hydrodynamic methods suffer from 
insufficient physical fidelity, while microscopic methods usually incur huge computational costs. One 
promising class of methods in between is based on the Boltzmann equation, which is a central equation in 
the kinetic theory [4]-[6]. 
The Boltzmann equation is a nonlinear integro-differential equation that describes the evolution of particles 
due to free flight, acceleration, and collisions [4]. It cannot be solved easily due to its complexity, hence a 
series of simplified physical models have been proposed based on the Boltzmann equation. It is equivalent 
to a list of infinite moment equations, so that a model has a higher order accuracy if it includes more kinetic 
moments. They can be roughly divided into two categories: (i) solvers of macroscopic transport equations 
[4], and (ii) numerical models of the Boltzmann equation [5]-[8].  
Discrete Boltzmann method (DBM) is one of the kinetic models, which has been applied to combustion and 
detonation [9]-[10]. In this work, we develop a novel DBM for compressible reactive flows with various 
nonequilibrium effects. Compared with previous hybrid schemes where the fluid flow is described by a set 
of discrete Boltzmann equations and the chemical reaction progress is controlled by another governing 
equation, this DBM employs one unified set of discrete Boltzmann equations. It has been demonstrated 
[10]-[12] that the present DBM is physically accurate, computationally efficient, and numerically robust.  

2 Discrete Boltzmann equation 
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With the Einstein summation convention, the discrete Boltzmann equation takes the following form. 

  , (1) 

where the superscript  indicates the chemical reactant   and product , respectively. The subscript  
denotes time,  represents the space coordinates  and , respectively. is the relaxation time, 
and  due to momentum conversation.  ( ) stands for the discrete (equilibrium) 
distribution function, with 1, 2, …, 16. As shown in Fig. 1, the dicrete velocities  read 

   (2) 

where cyc indicates the cyclic permutation,  and  are turnable parameters to control the values 
of discrete velocities. In the following text, another parameter should also be introduced, namely, 

, except  for .  

 
Figure 1. Sketch of the discrete velocities. 

For each species , the number density is , mass density , flow velocity 

, and kinetic energy . For the mixing, the number 
density is , mass density , flow velocity , and kinetic energy 

. To be consistent with the Navier-Stokes (NS) equations in the hydrodynamic limit, 
the relations between the discrete equilibrium distribution fuction  and the equilibrium 
distribution fuction  should be satisfied as below, 

 ,  (3) 

with 

( ) ( )1 eq
t i i i i i if v f f f Rs s s s s s

a a t
-

¶ + ¶ = - +

s A B t
a x y st

A Bt t= if
s eq

if
s

i = iv

( )
( )
( )
( )

cyc : ,0 1~ 4,
cyc : , 5 ~ 8,
cyc : ,0 9 ~12,
cyc : , 13 ~16,

a

a a
i

b

b b

v i
v v i
v i
v v i

ì ± =
ï ± ± =ï= í ± =ï
ï ± ± =î

v

av bv

0ih = i ah h= 5 ~ 8i =

s ii
n fs s=å m ns s sr =

i ii
u f v ns s s s
a a=å ( )2 2 2i i ii

E m f vs s s sh= +å
n ns

s
=å s

s
r r=å u us s

a as
r r=å

E Es
s

=å
eq

if
s

eqf s

eq eq
i ii
f f d ds s h=Y Yå òò v

 

 
2 56

4 87

3 1

14 13

11

15 16

10

12

9



Lin, C.-D.  Discrete Boltzmann modelling 

27th ICDERS – July 28th - August 2nd, 2019 – Beijing, China 3 

   (4) 

where  is the molar mass,  counts rovibrational degrees of freedom,  corresponds to 

rovibrational energies. On the left-hand side of Eq. (3) are seven elements , , , , 

, , , while on the right are , , , , , 

, , respectively. Mathematically, Eq. (3) can be rewritten into , as a 
consequence,  

   (5) 

with a square matrix   that acts as a bridge between  and the kinetic 

moments .  

Moreover, to calculate the reaction term , we employ the following relation,  

 ,  (6) 

with 

 , (7) 

where  and  characterize the change rate of number density and temperature due to chemical 
reactions, respectively. The elements  and  in Eq. (6) are the same as those in (3). Similarly, 
Eq. (6) could be rewritten as , hence 

 ,  (8) 

with , and .  

For simplicity, the chemical reactant and product are denoted as  and , respectively. To control the 
chemical reaction, i.e., , the Arrhenius function is employed 

   (9) 

where  represents the reaction coefficient, and  is the effective activation energy. 
Consequently,  

   (10) 
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with , and  the heat release per unit mass of chemical reactant. Hence,  

   (12) 

It is worth noting that, in addition to the recovery of NS equations in the hydrodynamic limit, the DBM has 
the capability to provide various thermodynamic nonequilibrium information. Specifically, 

 is related to the viscous stress tensor,  the 

nonorganised heat flux,  the flux of nonorganised heat flux, 

 the flux of viscous stress flux.  

3 Results and Discussions 

To demonstrate the capability of the DBM, we perform two tests. The first is a one-dimensional steady 
detonation, where numerical results are compared with the ZND theory [1]. The second is a two-dimensional 
explosion, which aims to validate the conservation of mass, momentum, and energy.  

3.1 Steady Detonation 

Firstly, we simulate a steady detonation wave that travels forward with a Mach number . In 
front of the detonation wave, , is the chemical reaction with density , velocity , and 
temperature . The chemical heat release per unit mass of chemical reactant is . Behind the 
detonation wave, , is the chemical product with physical quantities ( , , , ) = (1.56244, 
1.15470, 0, 3.01066), which are obtained from the Rankine-Hugoniot relations. The resolution is 

, the spatial step  , the temporal step , the relaxation time 

, the rovibrational degrees of freedom , the reaction coefficient , the 
effective activation energy , and the parameters ( , , ) = (1.5, 5.5, 6.0). Furthermore, 
the inflow and outflow boundary conditions are imposed on the left and right sides, respectively. The period 
boundary condition is employed in the y direction.  

 
Figure 2. Profiles of the detonation wave. 

Figure 2 illustrates the profiles of density (triangles), horizontal velocity (squares), and temperature 
(diamonds) in the evolution of the detonation at the time constant . The solid lines denote the ZND 
solutions [1]. We can find a good agreement between the DBM results and the ZND solutions in the whole 
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region except the von Neumann peak. The physical reason is that our DBM takes account of viscosity, heat 
conduction, and various thermodynamic nonequilibrium effects, hence there is a smooth continuity around 
the detonation wave. In contrast, the ZND theory [1] ignores the viscosity, heat conduction, and various 
thermodynamic nonequilibrium effects, and assumes there is a sharp discontinuity at the detonation front.  

3.2 Explosion wave 

Next, let us simulate an explosion wave in a square cavity with length and width . The spatial 

resolution is , the time step , the relaxation time , the rovibrational 

degrees of freedom , the reaction coefficient , the effective activation energy 
, and the parameters  ( , , ) = (0.9, 3.5, 6.0). In addition, the specular reflection boundary 

condition is chosen for the walls. Theoretically, there is no mass or heat transfer through the walls.  

 
Figure 3. Pressure contours at time constants t = 0, 0.02, and 0.04 in the evolution of explosion. 

Initially, the chemical product with ( , , , ) = (0.5, 0, 0, 4) is located in the center of the 
compuational domain with radius . Around the circular area is the chemcial reactant with ( , , 

, ) = (1, 0, 0, 1). The chemical heat release per unit mass of chemical reactant is . Figure 3 
displays the pressure, ,  in the evolution of explosion at time constants t = 0, 0.02, and 0.04, from 
left to right, respectively. As shown in the middle panel, the explosive wave propagates outward as time 
goes on. The presure is high around the explosive wave, and is low inside the explosive wave. The rightmost 
panel shows that, after the explosive wave collides with walls, it turns into reflected wave and travels 
inwards. Obviously, the simulated explosive phenomenon is qualitatively right. 

 

Figure 4. Conservative quantities in the evolution of explosion. 

To further have a quantitative verification, Fig. 4 demonstrates the evolution of conservative quantites in 
the cavity. The squares stands for mass, the circles for energy, the upper and lower triangles for momentum 
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in x and y directions, respectively. The lines represent corresponding theoretical results. It is evident that the 
numerical and theorical results coincide with each other. For example, the DBM gives ( , , , ) 

= (6.36580, , , 2.91851) at time t = 0, 0.2, which are quite close to the theoretical results 
(6.36456, 0, 0, 2.91883), respectively.  

4 Conclusions 

An efficient, accurate, and robust DBM is constructed for compressible reactive flows with various 
hydrodynamic and thermodynamic nonequilibrium effects. In addition to being consistent with the 
traditional NS equations in the continuity limit condition, the DBM contains various significant 
thermodynamic nonequilibrium effects beyond the NS equations. It is a kinetic model based on a unified set 
of discrete Boltzmann equations that describe reactive flows. Two types of benchmarks, that is, one-
dimensional steady detonation and two-dimensional explosive, are adopted to demonstrate the capability of 
this model.  
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