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1 Introduction

Detonation is a chemical reaction transmission process with a large amount of energy release. It involves
complex interaction between reactive chemical kinetics and fluid dynamics. Numerical simulation of the
detonation wave propagation is an important research field and many references can be found in the literature
[1, 2]. How to accurately capture and track the propagation of shock wave is always a difficult problem in
detonation simulations. One of the conventional methods is to increase the number of computational grids.
However, as the number of grid cells increases, the computational complexity increases rapidly. Therefore,
to capture the detonation wave with high accuracy and keeping the computational cost within acceptable
limits are major challenges. In order to achieve this, mesh adaptation is an essential tool for solving such
problems.

Many studies have investigated moving mesh methods applied to singularity problems for one- and two-
dimensional hyperbolic equations. However, the extension of moving mesh methods to three-dimensional
computation is always non-trivial. The most difficult aspects of three-dimensional computation are mesh
redistribution and physical interpolation redistribution on a new mesh. An important intuitive approach for
determining the mesh point relocation and movement is to minimize some functional formulated to measure
the error or difficulty in numerical simulation.

The objective of the present study is to present a robust, stable, and effective three-dimensional scheme
for detonation wave propagation. We propose an arc-length moving mesh scheme to deal with the strong
discontinuity of detonation wave propagation in three-dimensions, similar to the arc-length methods used
in the singularity behaviors problem. Further, we present a numerical example to compare our results with
those presented in [8, 9] in order to prove that our scheme is stable and reliable.

2 Governing equations

The governing equations which describe the flow and reaction evolution with a single step chemical reaction
model:

∂w

∂t
+

f(w)

∂x
+

g(w)

∂y
+

h(w)

∂z
= s(w), (1)
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where the conserved variable vector w, the flux vectors f(w), g(w), and h(w), and the source vector s(w)
are given:

w = (ρ, ρu, ρv, ρw,E, ρY )T (2)

f(w) = (ρu, ρu2 + p, ρuv, ρuw, (E + p)u, ρuY )T (3)

g(w) = (ρv, ρuv, ρu2 + p, ρvw, (E + p)v, ρvY )T (4)

h(w) = (ρw, ρuw, ρvw, ρu2 + p, (E + p)w, ρwY )T (5)

s(w) = (0, 0, 0, 0, 0, ω̇)T (6)

Here u, v, and w are the Cartesian components of the fluid velocity in the x, y, and z directions, respectively,
ρ is the density, p is the pressure, E is the total energy per unit volume, and Y is the reactant mass fraction.
The total energy E is defined by

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
+ ρQY, (7)

where Q is the heat released by the reaction and γ is the specific heat ratio. The source term ω̇ is assumed
to be in an Arrhenius form

ω̇ = −K̃ρY e−T̃/T , (8)

where T is the temperature, T̃ is the activation temperature, and K̃ is a constant pre-exponential factor. For
ideal gas which has the following non-dimensional equation of state:

p = ρT. (9)

3 Numerical Method

Structured meshes with hexahedral elements will be used here. A schematic diagram of element Kī,j̄,k̄ is
shown in Fig.1(a). Owing to the movement of the mesh points, the hexahedron element will change into a
polyhedron element. In order to calculate the element volume and the boundary external surface area, each
surface of the hexahedron element is divided into two surfaces. The average over the cell Kī,j̄,k̄ is

w̄ī,j̄,k̄ =
1∣∣Kī,j̄,k̄

∣∣ ∫
Kī,j̄,k̄

wī,j̄,k̄dσ. (10)

Here,
∣∣Kī,j̄,k̄

∣∣ denotes the volume of the cell Kī,j̄,k̄.

Integrating (1) over Kī,j̄,k̄ and rewriting, we express a semi-discrete scheme of (1) as:

∣∣Kī,j̄,k̄

∣∣ ∂

∂t
w̄ī,j̄,k̄ = −

∑
l

H
(
w

int(l)

ī,j̄,k̄
,w

ext(l)

ī,j̄,k̄
,nl

ī,j̄,k̄

) ∣∣∣elī,j̄,k̄∣∣∣− ∣∣Kī,j̄,k̄

∣∣ s (w̄ī,j̄,k̄

)
(11)

where nl
ī,j̄,k̄

is the outward unit normal vector of the boundary external surface el
ī,j̄,k̄

(l = 1, 2 . . . , 12). And
Lax-Friedrichs flux is defined by

H (u,v,n) =
1

2
[F (u) · n+ F (v) · n− a (v − u)] , (12)
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Figure 1: (a):Schematic diagram of the control element Kī,j̄,k̄; (b): Changed area D1

where a = max
u,n

|F ′ (u) · n| ,F (w) = (f(w),g(w),h(w)) . In order to obtain the second-order spatial

accuracy, we use van Leer’s limiter [3] to reconstruct wint(l)

ī,j̄,k̄
,w

ext(l)

ī,j̄,k̄
. Time discretization can be achieved

using the strong stability-preserving high-order Runge-Kutta time discretization [4, 5].

Next, we present the derivation of the three-dimensional pseudo-arc-length moving mesh scheme. Let
x = (x, y, z) and ξ = (ξ, η, ζ) denote the physical and computational coordinates, respectively. A one-
to-one coordinate transformation from the computational domain Ωc to the physical domain Ωp is denoted
by

(x, y, z) = (x (ξ, η, ζ) , y (ξ, η, ζ) , z (ξ, η, ζ)) . (13)

In the variational approach, the mesh map aims to find the minimizer of the functional

Φ(x, y, z) =
1

2

∫
Ωc

[
∇TxG1∇x+∇T yG2∇y +∇T zG3∇z

]
dξdηdζ, (14)

where G1, G2, and G3 are given symmetric positive definite matrices called monitor functions, and ∇ =
(∂ξ, ∂η, ∂ζ)

T . The corresponding Euler-Lagrange equation is given by

∂ξ (G1∂ξx) + ∂η (G1∂ηx) + ∂ζ (G1∂ζx) = 0,
∂ξ (G2∂ξy) + ∂η (G2∂ηy) + ∂ζ (G2∂ζy) = 0,
∂ξ (G3∂ξz) + ∂η (G3∂ηz) + ∂ζ (G3∂ζz) = 0.

(15)

In order to make the adaptive grid keep consistent in x, y, z, we choose G = ωI . For greater accuracy near
the non-smooth part of the solutions, we introduce the monitor function of the pseudo-arc-length norm [6]:

ω =
√

1 + α1|W |+ α2|∇W |2, (16)

where α1 and α2 are some nonnegative constants, and W is some physical value to control mesh movement
(density ,pressure, etc. are commonly used). In our computations, we will use the Gauss-Seidel iteration
method to solve the mesh equation (15). It can also be demonstrated that the new mesh x[κ+1] generated by
(17) keeps the monotonic order of x[κ]. Because of the limit of the paper, we omit the certificate.

Then, let us consider updating of the solutions on the new grids x[κ+1] from the old grids x[κ]. Han and Tang
[7] have claimed that updating of the solutions should preserve the conservation property of the conservative
variables. Our schemes also preserve the conservative property for w̄ī,j̄,k̄ in the sense that:∑

ī,j̄,k̄

∣∣∣K [κ]

ī,j̄,k̄

∣∣∣ w̄[κ]

ī,j̄,k̄
=

∑
ī,j̄,k̄

∣∣∣K [κ+1]

ī,j̄,k̄

∣∣∣ w̄[κ+1]

ī,j̄,k̄
. (17)
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Let Dl denote the region scanned by the surface el
ī,j̄,k̄

after one iterative step of (18). Thus, we have the
following conservative interpolation scheme:

∣∣∣K [κ+1]

ī,j̄,k̄

∣∣∣ w̄[κ+1]

ī,j̄,k̄
=

∣∣∣K [κ]

ī,j̄,k̄

∣∣∣ w̄[κ]

ī,j̄,k̄
+

12∑
l=1

F̂l

(
w̄

int(l)

ī,j̄,k̄
, w̄

ext(l)

ī,j̄,k̄

)
(18)

Here, F̂l(·, ·) denotes the integration of w̄ over the domain Dl. Then, we give an approximation of F̂l(·, ·):

F̂l(u,v) = max(|Dl|, 0) · v +min(|Dl|, 0) · u. (19)

For example, we compute D1. The modified area D1 is shown in Fig.1(b). Note that D1 is composed of
three tetrahedrons; hence, we have

D1 =V
x
[κ]
i+1,j,k+1x

[κ+1]
i+1,j,k+1x

[κ+1]
i+1,j+1,k+1x

[κ+1]
i,j,k+1

+ V
x
[κ]
i+1,j,k+1x

[κ+1]
i+1,j+1,k+1x

[κ]
i,j,k+1x

[κ+1]
i,j,k+1

+ V
x
[κ]
i+1,j,k+1x

[κ+1]
i+1,j+1,k+1x

[κ]
i+1,j+1,k+1x

[κ]
i,j,k+1

.
(20)

4 Numerical examples

Example 1. The first test problem is a spherical shock wave expanded in an enclosed box using the Euler
equations without the chemical source term [8, 9]. The computational domain is [0, 1]× [0, 1]× [0, 1], and
divided uniformly into 100 × 100 × 100 cells. In order to improve the computational efficiency, the MPI
parallel computing mode are uesd with a total of 16(4× 2× 2) processes. All the boundaries are treated as
a reflective wall. Initially, the primitive variables are set as follows:

(ρ, u, v, w, p) =

{
(5, 0, 0, 0, 5) for

√
(x− 0.4)2 + (y − 0.4)2 + (z − 0.4)2 ≤ 0.3,

(1, 0, 0, 0, 1) other.
(21)

The monitor function is given by ω =
√

1 + 100|ρ|2 + 50|∇ρ|2.

( )a x

Y

( )b

Figure 2: Density contours in z = 0.4 section at time t = 0.5. (a)pseudo-arc-length schemes; (b)
ref. [9].

Fig.2 shows the density contours of explosion in a box in the z = 0.4 section at time t = 0.5. The density
contours (density=1.8) obtained are shown in Fig.3. Fig.2(a) and Fig.3(a) show the results of our schemes.
For comparison, Fig.2(b) and Fig.3(b) show the results [8, 9] which are obtained via the block-structure
adaptive mesh refinement technique. In Fig.2, no significant difference can be seen between the two results.
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( )a ( )b

Figure 3: Density contours (density= 1.8) at time t = 0.5. (a) pseudo-arc-length schemes; (b) ref. [8].

Complex features, such as the shocks and the interactions between the shocks, are well captured. Clearly,
the results of our schemes are in good agreement with those presented in [8, 9] (Fig.3). These two figures
show that our schemes can effectively simulate three-dimensional compressible inviscid flows with complex
shock wave structures, and our results are reliable.

Example 2. This is a three-dimensional detonation diffraction problem. The computational domain are
shown in Fig.4. The number of computational mesh is Nx ×Ny ×Nz = 120 × 80 × 80. We also use the
MPI parallel computing mode with a total of 16(4 × 2 × 2) processes. The boundaries of the area in our
simulation are non-reflective and the boundary conditions for the obstacle([0, 1]×[0, 1]×[0, 1]) are reflective.
Let (ρ, u, p, Y ) = (1, 0, 1, 1) be the physical values of the unreacted region. The analytical solutions of the
ZND model [10] are taken as the initial values for the simulation. The non-dimensional reaction parameters
are taken as γ = 1.2, Q = 50, T̃ = 50, K̃ = 230.75, and f = 1.0. The monitor function is given by
ω =

√
1 + 5|ρ|2 + 3|∇ρ|2. If we choose different parameters α1, α2 or physical variables W , we will

obtain various adaptive meshes. We will report these results at the meeting.

obstacle

unreacted region
reacted region

Figure 4: Computational domain of example 2.

Fig.5 shows the simulate solutions and mesh at time t = 0.2. From Fig.5(a) and Fig.5(b), we can see that
our scheme can deal with the low-pressure and low-density region behind the obstacle. The entire adaptive
mesh is shown in Fig.5(c). The slices of the mesh changing with pressure at different times are compared in
Figs.6. It shows that the adaptive mesh can capture the blast wave front.
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Figure 5: Contour of three-dimensional flow at time t = 0.2. (a)density(ρ = 0.3);(b)pressure(p =
2.0);(c)mesh.

Figure 6: Slices of mesh in three-dimensional space. (a)time t = 0.076;(b)time t = 0.2.
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