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1 Introduction 

Detonation can be classified form weakly to highly unstable mode depending on the mixture composition. 
In weakly unstable mode, the structure of detonation wave is very regular, smooth and shows the uniform 
cell size with regular period in the smoked-record.However, in highly-unstable mode, instead of stable and 
regular movement, the detonation structures have tendency of extremely irregular and wrinkled wave front 
and cell shapes. Also by the results of Power Spectrum Density(PSD) using Fast Fourier Transform(FFT), 
the peak points are shown as separated pulse form with stead interval in weakly-unstable mode, whereas 
irregular interval peak points and unsystematic noise shapein highly-unstable mode. These seem 
strengthdifference of turbulence effects. J. M. Austinetal.[1] investigated unstable detonations from 
weakly to highly unstable modes by using different chemical compositions. J. E. Sheperd[2] discussed the 
role of turbulence flow in gaseous detonation and summarized the up-to-date studies on this issue. 
Powers[3] showed the viscous effect by comparing solutions obtained from the Euler and Navier-Stokes 
equations. They conclude that physical diffusion is important for high grid resolution when the numerical 
diffusion become negligible, and that cellular structures from the inviscid simulations depend on the grid 
resolutions. Sharpes[4] and Redulescue[5] examined carefully the grid resolution effect. Deledicqueet 
al.[6] described wave front and kinetic characteristics due to activation energy in vicinity of weakly 
unstable mode in 3-D structure which has periodic boundary conditions. Choi et al.[7] showed that better 
grid resolution is required to observe cell structure in highly unstable mode compare to weakly unstable 
mode in numerical analysis of 2-D detonation cell structure using fixing grid systems.Regardless of many 
studies done previously there are quite a many unknowns still unresolved and need a systematic 
investigation. Especially, there was little work on the detailed 3-D numerical analysis is of highly unstable 
detonation wave front so far, presumed being due to heavy computing cost for the fine grid resolution 
required to capture the unstable detonation characteristics. Present study attempts to simulate the highly 
unstable detonation wave in three-dimension in comparison with an equivalent two-dimensional case.  
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2 Numerical Approach  

 The detonation phenomena are modeled by mass, momentum and energy conservation equations coupled 
with a conservation equation of a reaction progress variable in three-dimensional coordinates. Single step 
irreversible Arrhenius reaction model with variable specific heat ratio formulation is used to simulate the 
highly unstable detonation phenomena with the complexity of handling detailed chemistry. Thermo-
chemical parameters used in numerical study were adopted from the J. M. Austineet al.[1] Viscous terms 
were neglected, thus the model corresponds to the case of infinite Reynolds number. The coupled 
govering equations are summarized as follows in the conservative vector formulation.  
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The fluid dynamics equations were discretized using finite volume cell-vertex method. Numerical fluxes 
in cell boundaries were calculated by 3rd order accuracy MUSCL-type TVD scheme using Roe’s 
approximate Riemann solver. Time integration is carried out using standard 4th order accurate Runge-
Kutta method. The code was parallelized by domain decomposition technique using MPI standard. The 
incoming boundary condition was fixed at C-J detonation speed and characteristic boundary condition was 
used at exit using C-J condition as a far-field condition. Periodic boundary is used at the lower and upper 
boundaries. Physical values of grid system and parameters used in the simulation are summarized in table 
1 and 2. Initial condition over the computational domain is generated using 1-D ZND structures solution 
with inclined distribution as in initial perturbation. 

Table 1: Summary of computational grids 

Grid system Minimum  
spacing 

Domain size 

2-D 
506×402 Δx=Δy=0.0025 5.13×1.0 

200,000 cells, uniform 401×402 + 3.85% stretching 
105×402 

3-D 
506×402×402

Δx=Δy=Δz 
=0.0025 

5.13×1.0×1.0 

81,700,000 cells, uniform 401×402×402+ 3.85% 
stretching 105×402×402 

 

Table 2: computational cases adopted form Austine et al. (2005) 

Weakly unstable 
detonation 

2H2+O2+12Ar 

γU = 1.602,γB = 1.288 

θ= 5.2,q = 24.2 

Highly unstable 
detonation 

C3H8+5O2+9N2, 

γU = 1.336, γB = 1.161 

θ= 12.7,q = 65.3 
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3 Results and Discussions.  

 Figure 1 shows the 3-D structures of the detonation wave stabilized in the uniform gird for different pre-
exponential factor, k, after certain time has passed in highly-unstable mode. When initial wave front 
structure is relatively uniform and reaction constant was small, wave front structures showed regular and 
smooth form. On the other hand, when reaction constant value was larger, wave front structures are shown 
irregular and wrinkled. These differences are confirmed more clearly in figure 2. Both resultsshow that 
length of induction length is much longer than reaction regionbetween shock wave and combustion 
region.Also unreacted pocket where reaction hasn’t taken place can be seen clearly inner combustion 
reaction regions. Similar to 2-D studies, results of low reaction constant show longer reaction length 
between front shock wave and combustion region. Blue color represents pressure in the front and within 
the combustion region of 3-D iso-surface in figure 2 (left side). Other colors represent reaction progress 
variable c. Reaction progresses occur at longer areas and the reactive fronts are smoother when reaction 
constant is lower. When reaction constant k is increased, reactive fronts have more curve. So combustion 
takes place rapidly in the short region. It seem as the result is more stronger turbulence effects.  

 

 

Figure 1. Pressure distribution, left: k=105 at time 35.48; right: k=4×105 at time 39.76 

 

 

Figure 2. Pressure and reaction progress variable (left) and cross-sectional structure (right), 

 top: k=105; bottom: k=4×105 

 

 Figure 3 and 4 show pressure and combustion reaction progress rate in 2-D and 3-D, respectively. The 2-
D figures show difference in process of time, and the results of 3-D show difference of wave front and 
reaction progress rate of stationary wave in arbitrary time. By the comparing these results, 3-D structures 
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verified. Also by PSD analysis, understanding of characteristics for different pre-exponential factor k and 
unstable are was done and Schlieren and overlaid images of 3-D analysis results were compared to discuss 
irregularity due to interference of 3-D wave front.  
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