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1 Introduction 

    Pathological detonations can arise in reactive systems where exothermic and endothermic reactions are 

present simultaneously.[1-3] A fluid element traversing the steady wave structure of a pathological 

detonation is accelerated as the chemical reactions release heat (while subsonic) or absorb heat from it 

(while supersonic). Within this reaction zone, there exist a location where the flow moves at the local 

sound speed away from the leading shock, which is known as the sonic point. Upstream from the sonic 

point, the exothermic reactions release heat faster than the endothermic reactions absorb heat, hence the 

subsonic flow (relative to the leading shock) is accelerated; downstream from the sonic, the endothermic 

reactions predominate so that the supersonic flow is further accelerated due to heat removal until reaching 

the chemical equilibrium (i.e., complete reaction); the overall rate of heat releases vanishes as the flow 

passing through the sonic point. Due to the predominance of exothermicity in the subsonic reaction zone, 

the amount of heat release that supports the shock front to propagate is greater than total amount of heat 

release at the CJ equilibrium state. Hence, a pathological detonation wave propagates at a velocity that is 

greater than the CJ velocity. There exists a unique (or eigenvalue) solution for this velocity that permits 

the rates of exothermic and endothermic reactions to be balanced in the flow upon reaching the sonic point, 

and this solution can be determined by iterating upon the propagation velocity and successively solving 

for the one-dimensional, steady ZND structure. 

    In most real detonation systems, detonation waves exhibit a multidimensional, unsteady structure while 

experiencing intense instabilities. The exothermic and endothermic processes are not only chemical 

reactions, but also dissipative processes (e.g., frictional effects) and the relaxation of mechanical and 

thermal fluctuations due to the instabilities towards equilibria. It remains unclear whether a one-

dimensional, steady wave structure where only chemical reactions are incorporated can accurately predict 
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the location of the effective sonic surface in a spatio-temporally unstable pathological detonation wave. In 

other words, the physical significance of the relaxation processes on the hydrodynamic thickness of 

unstable detonations has not yet been well demonstrated using the available theoretical tools based on the 

ZND solution. 

    In this study, stable and unstable pathological detonations are computationally simulated. Via 

performing the averaging analysis that has been explored for detonation studies over the past decade [4-6], 

a time- and density-weighted mean wave structure can be obtained for these simulated pathological 

detonations. The objective of this study it to compare these mean structures with their corresponding ZND 

predictions, and examine whether the interplay between the chemical reactions and the relaxation 

processes has significant effects on the reaction zone dynamics, hence, the wave propagation behavior. 

These effects can be further illustrated by evaluating the fluctuations in flow quantities based on the 

averaged simulation results. An advantage of using a pathological detonation system to study the effects 

of the relaxation processes on detonation hydrodynamic thickness is that a sonic point can be clearly 

identified, and thus, a well-defined hydrodynamic thickness (i.e., distance from the leading shock to the 

sonic point) can be determined in the ZND solution and very likely in the mean structures as well. 

2 Problem description  

    The pathological detonation system considered in the study is governed by the one- or two-dimensional 

reactive Euler equations. Two consecutive irreversible reactions       with Arrhenius (temperature-

dependent) reaction rates are considered in this model. Reactions      and     are exothermic and 

endothermic, respectively. The reactive system consists of an inviscid, calorically perfect gas (i.e., with a 

constant ratio of specific heat  ). The governing equations (for one-dimensional space) in a lab-fixed 

reference frame with flow and state variables non-dimensionalized with respect to the pre-shock, initial 

state are as follows, 

  

  
 

     

  
                                                                     (1) 

where the conserved variable  , the convective fluxes  , and reactive source term   are, respectively, 
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In such a reaction scheme,    and    are the reaction progress variables (  for unreacted and   for 

completely reacted) monitoring the exothermic and endothermic reactions, respectively, and can be related 

to the mass fractions of species A, B, and C, i.e.,   ,   , and   , as      ,         , and    
    . The dimensionless specific total energy   for a homogeneous system is thus defined as   
                        where    and    are the dimensionless specific heat release for the 

exothermic and endothermic (with a negative   ) reactions, respectively. In Eq. 2,    and    are the rates 

of exothermic and endothermic reactions in forms as follows, 
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                       and                            

where    is the dimensionless activation energy and   is the pre-exponential factor that is arbitrarily 

chosen to be the same for both reactions. 

    In this current abstract, with       ,       , and      , one-dimensional simulations have 

been performed for three cases of different propagation behaviors: 1) steady propagation with        

and       ; 2) periodically pulsating propagation with        and       ; 3) highly chaotic 

pulsation with        and       . The parameters for the above-mentioned cases are selected 

according to the analysis and simulation results shown in [7,8]. In all cases, a rightward-propagating 

detonation wave was initiated by a high pressure (5 times the CJ pressure) placed near the left end of the 

computational domain. The value of   was chosen so that the half-reaction-zone length in the eigenvalue 

ZND solution equals unity. 

3 Numerical methodology and averaging analysis 

    The simulation code used to solve the reactive Euler equations was based upon a uniform Cartesian grid. 

This code used the MUSCL-Hancock TVD Gudonov-type finite-volume scheme with an exact Riemann 

solver and the van Leer non-smooth slope limiter. The reaction process was solved using a second-order, 

two-stage explicit Runge-Kutta method. The Strang splitting method was used in order to maintain 

second-order accuracy. 

    In order to obtain the mean detonation structure, density-weighted (Favre), temporal averaging was 

performed to the simulation data. The averaging method used in this study, similar to that first used by 

Sow et al. [5], is based on a reference frame moving at the instantaneous propagation velocity of the 

leading shock     . In this moving reference frame, the spatial coordinates and particle velocity are 

transformed as                
 

 
 and             , respectively. A simple temporal averaging, 

i.e., Reynolds averaging,  procedure is applied to density and pressure as follows, 

       
 

     
          
  
  

   and                         
 

     
          
  
  

    and          

where    and    indicate the starting and ending time of the period over which   and   are averaged. The 

bar “ ” and superscript “ ” indicate temporally averaged variables and their fluctuating quantities, 

respectively. Favre averaging (i.e., density-weighted) averaging is then applied to particle velocity and 

reaction progress variables as follows, 

    
        

  
    and                                 

            

  
    and            

         

where superscripts “ ” and “  ” indicate Favre-averaged variables and their corresponding quantities, 

respectively. The averaged structure of the wave is therefore governed by the one-dimensional, steady 

Favre-averaged Euler equations as follows, 
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                                                                                  (3) 

 

   
                               

                                                               (4) 

 

   
                                        

                                                            (5) 

In Eqs. (4) and (5), terms       
       and        

         represent the inertial (pseudo-) force and the work done by it 

due to the transformation to a reference frame moving at     . Note that these two terms are zero for a 

steady wave propagation. 

    Taking the expressions for average specific total energy                          +      and 

averaged speed of sound            into Eqs. (3) to (5), after some algebraic manipulation, one obtains 

the so-called master equation as follows, 

   

  
 

                

           
 

The master equation describes how a fluid element traversing through a Favre-averaged wave structure is 

accelerated by the thermicity due to inertial force (  ), mechanical fluctuations (  ), thermal fluctuations 

(  ) and exo- and endothermic reactions (    and     ). The detailed derivation of the master equation 

and expressions of the thermicity terms can be found in [5]. 

4 Results and Discussion     

     The history of the instantaneous propagation velocity      for the cases with 1)        and       , 

2)        and       , and 3)        and        are plotted as (blue curves) functions of the 

leading shock position    in Fig. 1(a), (b), and (c), respectively. As shown in Fig. 1(a), after a short 

initiation process,      reaches a steady value of          that agrees with the eigenvalue velocity        

(black dashed line) predicted by the ZND model. For the cases with        and        shown in Fig. 

1(b), the resulting      starts to periodically oscillate with an increasing amplitude after the initiation 

process. An averaged velocity      in agreement with the eigenvalue solution is obtained after      settles 

into a steady oscillation with a fixed amplitude (i.e., after        ). The case with        and 

       results in a highly chaotic wave propagation as shown in Fig. 1(c). The      measured over a 

long distance (i.e., from         to     ) approximately equals to    , but significantly lower than its 

corresponding eigenvalue solution                . 

    Via performing the averaging procedure described in Sec. 2, mean wave structures have been obtained 

for the two unstable cases, i.e., periodic pulsation with        and        and highly chaotic 

propagation with        and       , and shown in Fig. 2. The averaged pressure profile (blue curve) 

and the location of the averaged sonic point (open blue circle) for the case of periodic pulsation, as shown 
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in Fig. 2(a), very closely match that the ZND predictions (black dashed curve and solid black circle, 

respectively). Hence, for this case, the hydrodynamic thickness    of the mean structure agrees well with 

that predicted by the ZND model. In Fig. 2(c), as indicated by the black curve that represents the overall 

amount of heat release by the reactions (i.e.,      +     ) in the mean structure for the periodic pulsating 

case, an “overshoot” in exothermicity upon reaching the sonic point contributes to the super-CJ 

propagation speed of this pathological detonation wave.  

    For the highly chaotic cases shown in Fig. 2(b), the mean profile of pressure (blue curve) significantly 

deviates from the ZND solution. The averaged von Neumann pressure is lower than that in the ZND 

profile, and the averaged sonic point seems to be located very far downstream from the leading shock. The 

   of the mean structure is likely greater than that of the ZND solution by an order of magnitude. As 

shown in Fig. 2(d), the total amount of chemical energy, i.e.,      +     , is monotonically released 

(black curve decreases) without an overshoot in exothermicity choking the flow as predicted in the ZND 

solution. The hypothesized mechanism underlying such a mean structure is that the relaxation processes of 

the intense fluctuations in this highly chaotic case are effectively endothermic, hence, the overall 

exothermicity is never sufficiently strong to choke the flow until reaching the equilibrium CJ state far 

downstream; this mean structure thus supports a wave propagation at an average velocity that is very 

closed to    . This hypothesis can be verified via quantitatively examining the fluctuation terms in Eq. 6 

and their relaxation processes. 

 

Figure 1. History of the instantaneous propagation 

velocity      for the cases with (a)        and 

      , (b)|        and       , and (c) 

       and        are plotted as (blue curves) 

functions of the leading shock position and compared 

to their corresponding eigenvalue velocities. 

 

Figure 2. Mean profiles of pressure ((a) and (b)) and 

reaction progresses ((c) and (d)) comparing to the 

ZND solutions. The case with        and     
   is shown in (a) and (c); the case with        

and        is shown in (b) and (d).
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5 Conclusion   

   In this study, one-dimensional pathological detonations have been simulated for three different (stable, 

periodically pulsating, and highly chaotic) cases. The mean wave structures have been obtained via Favre 

averaging analysis for the two unstable cases. While the mean structure for the periodically pulsating 

cases agrees well with the ZND solution, that resulting from the highly chaotic case significantly differs 

from the ZND profile with an elongated hydrodynamic thickness. Further analysis will be performed to 

examine the hypothesized role played by the relaxation processes of the fluctuating quantities. In future 

efforts, this study will be extended to two-dimensional pathological detonation systems where transverse 

instabilities are present. 
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