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1 Introduction

The propagation behavior of reaction fronts is influenced by the nature and extent of losses that are present
in the combustible systems. Losses in mass, momentum, and energy can result in a propagation velocity
deficit and, upon reaching a critical extent, the failure of self-sustained propagation, or quenching [1, 2] .
This critical extent of losses is known as the propagation limit, and it can be quantified by various parameters
according to the nature of these losses. For example, the limit to flame propagation through quenching plates
absorbing chemically released heat can be measured as the critical distance between the plates [3–5]; the
propagation limit of detonations experiencing lateral expansion behind the shock front can be determined as
the critical charge diameter or thickness [6–8]. The fundamental mechanism governing these propagation
limits is the interaction between losses and the propagation dynamics of reaction fronts. Different regimes
of propagation dynamics therefore result in different propagation criticalities.

In a reaction-diffusion system that consists of spatially discrete sources of energy (e.g., suspensions of
fuel particulates [9], calcium waves in intercellular signaling [10], etc.), a regime of complex, stochastic
propagation dynamics, distinct from those observed in continuum systems, arises when the characteristic
source spacing is on a scale comparable to the flame thickness [11–15]. While the limits to flame propagation
have been studied extensively in the continuum regime of combustion, the response of stochastic propagation
dynamics to heat losses has not been placed under in-depth scrutiny.

In this study, the dependence of the critical dimension (i.e., the smallest possible diameter or thickness
allowing propagation) of a three-dimensional domain containing point-like heat sources on various system
parameters, such as the magnitude of losses, will be examined. The cylindrical and slab (i.e., prismatic
with finite thickness) geometries will be explored, and the ratio between the critical dimensions of these
geometries will be examined using a reaction-diffusion model of point sources implemented via a numerical
construction of analytic solutions. Particulates are characterized by an ignition temperature and a reaction
time, and losses through heat diffusion into the surrounding inert media and through a volumetric loss term
will be considered.
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2 Model

Static point-like heat sources that release heat upon reaching an ignition temperature Tign are considered.
Sources are embedded in an inert medium, and are randomly distributed over a finite three-dimensional
domain (cylinder and slab geometries are considered). An example of a cylindrical and a slab domain is
shown in Figure 1.

Figure 1: Schematic of domain with (a) cylindrical geometry with diameter d, and (b) slab geometry with
thickness t at the initial time. Empty markers indicate unignited sources, and filled markers indicate ignited
sources. Sources are forced to ignite simultaneously in the shaded region of length lini = 0.1L. The double
arrow indicates the direction of propagation. The implementation of periodic boundary conditions via the
method of images is shown in (b) as the sets of faded markers.

The domain is considered to be continuous with its surroundings, i.e., the inert medium extends to infinity,
and heat diffuses throughout the medium. As such, heat is lost from the finite region containing discrete
sources into the environment containing no sources. Additional losses can be introduced via a volumetric
loss term; thus, the governing equation can be written as

∂T

∂t
= α∇2T +

hA

mcp
(T − T0) +

qB

ρcp
R (1)

where α, ρ, cp are the thermal diffusivity, density, and heat capacity of the medium in which heat sources are
embedded, h is the heat transfer coefficient between the medium and an isothermal volumetric heat sink, m
is the mass of the medium contained within the cylinder or slab boundaries, and T0 is the initial temperature
of the medium. The contribution of the discrete heat sources is characterized by heat release per unit mass
q, fuel mass per unit volume B, and heat release rate R. In the case of constant heat release over reaction
time tr, the heat release rate can be written using the Heaviside function H in terms of the times of ignition
of the i-th source tign,i, i.e., R = 1

tr

∑
i δ(x−xi)H(t− tign,i)H(tr− t+ tign,i). In the limit of instantaneous

reaction, the reaction rate becomes R =
∑

i δ(x − xi)δ(t − tign,i) Nondimensionalization of the equation
using the average source spacing l, characteristic heat diffusion time scale td = l2/α, and adiabatic flame
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temperature Tad gives rise to the nondimensional governing equation

∂θ

∂τ
= ∇2θ + νθ +

1

τc
H(τ − τign,i)H(τc − τ + τign,i) (2)

where the key nondimensional parameters are identified as the discreteness parameter τc = tr/td, the ig-
nition temperature θign =

Tign−T0

Tad−T0
, and the volumetric heat loss parameter ν = hV

kA
l2

(V/A)2
. The flame is

initiated by forcing all the sources in the first 10% of the domain length to ignite simultaneously at time
t = 0. In the limit of instantaneous reaction (τc = 0), the analytic solution for the temperature field is given
by linear superposition of the Green’s functions for sources that have ignited; for τc > 0, the solution is
given by the time-convolution of the Green’s function. Source ignition times are computed by searching for
ignition events in time using the analytic solution, and flame propagation is considered successful if there
exists an ignited source in the last 10% of the domain length. For each set of parameters, a minimum of
40 runs for 20 values of diameter or thickness were used to obtain the critical dimension, i.e., the diameter
dc of the cylinder or the thickness tc of the slab for which flame propagation is successful in 50% of the
runs. The length of the domain (and the transverse dimension of the slab) was fixed at 10 times the diameter
or thickness. Periodic boundary conditions in the transverse direction were implemented for the slab using
images (copies of the domain).

3 Results and Discussion

The case with ν = 0 is presented here for brevity; while volumetric heat loss is not considered, energy is
lost through heat diffusion from the finite domain to the environment. Figure 2 shows the critical dimension
(i.e., critical diameter and critical thickness) as a function of the discreteness parameter τc for values of
ignition temperature θign from 0.05 to 0.3.

Figure 2: Critical dimension at which the flame propagates for 50% of runs for cylindrical (left) and slab
(right) geometries, plotted as a function of discreteness parameter τc for values of the ignition temperature
θign = 0.05, θign = 0.10, θign = 0.20, θign = 0.30, and with volumetric heat loss parameter ν = 0 (i.e., heat
loss is limited to heat diffusion across lateral faces of the cylinder and slab). The critical dimension is nondi-
mensionalized by the average spacing between discrete sources, and temperature is nondimensionalized by
the adiabatic flame temperature.

As depicted in Figure 2, the critical dimension for both the cylindrical and slab geometries increases with
the discreteness parameter τc; that is, as the flame is made more continuum-like, more energy is required
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to sustain flame propagation under the influence of lateral heat losses. As τc approaches zero (i.e., in the
discrete limit), the critical dimension approaches a plateau. Note that the critical thickness of the slab falls
below unity; that is, a slab with thickness below one average source spacing in thickness can still allow
propagation for sufficiently low ignition temperature. As the ignition temperature θign is increased, the
critical dimension increases in both geometries, i.e., propagation is only possible with a greater ratio of
domain volume to surface area.

The ratio of the critical diameter to the critical thickness, or the scaling ratio, is plotted as a function of
τc in Figure 3. In the discrete limit, the scaling ratio is a function of the ignition temperature, but not
the discreteness parameter. In this limit, propagation is sustained by heat diffusing between neighboring
sources, i.e., through a percolation-like mechanism.

Figure 3: Scaling ratio of the critical diameter to the critical thickness as a function of the discreteness
parameter τc for values of the ignition temperature θign = 0.05, θign = 0.10, θign = 0.20, θign = 0.30,
considering only lateral losses. Scaling ratio plateaus at low τc, but remains a function of θign. Scaling ratio
begins to decrease from the plateau value in the continuum limit.

In the continuum limit, the heat release time of heat sources is large compared to the heat diffusion time,
and the resulting flame structure is continuum-like, with many ignited sources contributing to the ignition
of the next. As τc increases, the scaling ratio decreases, approaching a value in the neighbourhood of 2 : 1.
Flame propagation at high ignition temperatures requires contribution from multiple ignited sources, and is
thus more continuum-like.

4 Conclusions

The propagation limits of a reaction-diffusion wave fueled by discrete sources was investigated via a simple
three-dimensional model characterized by a discreteness parameter τc and an ignition temperature θign. Heat
losses due to lateral heat diffusion into an infinite inert medium and a volumetric heat loss term characterized
by the heat loss parameter ν were considered. The scaling ratio, i.e., the ratio of the critical cylinder
diameter to the critical slab thickness was found to depend on the discreteness parameter τc and the ignition
temperature θign. The percolation-like propagation in discrete systems explored in this work constitutes a
regime of propagation that fails to be captured using classical homogenizing methods.
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