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1 Introduction

When a blast occurs in a reactive gas, its strong lead shock compresses the gas to high pressures and tem-
peratures. The initially negligible effects of chemical reactions at early times become more important as the
blast strength decays over time due to expansion. Whether a detonation is initiated or not, depends on the
reactive mixture and the amount of energy deposited to create the initial blast. If the blast energy is sufficient
(supercritical), a steady or pulsating detonation is directly initiated. When the blast is weaker (critical), it
decays to a quasi-steady period of minimum speed, as low as 50% to 80% of the Chapman-Jouget (CJ)
speed, then overshoots the CJ speed and settles back down to initiate a detonation [1, 2]. The blast decay is
caused by unsteady expansion of the gas and curvature losses. If the blast energy is insufficient (subcritical),
the blast fails to initiate a detonation as it decays, within a time limit. The demarcation between initiation
and failure is drastic, especially in cylindrical and spherical geometries. A small decrease in blast energy
leads to a very large increase in initiation distance and failure.

The objective of much research in this field is to predict the minimum blast energy required to initiate a
detonation, ideally based only on the thermochemical properties of the mixture. Attempts to predict the
critical blast energy have typically compared a length scale of the blast decay to a scale inherent to the
mixture. Blast decay scales are often chosen as the radius when the blast has decayed to CJ or down to half
of the CJ strength. The mixture length scales are associated to the induction length, detonation cell size,
or other semi-empirical length scales related to propagation or initiation limits, as discussed by Lee and
Higgins [1] with references therein. Though there have been many improvements since the first works, the
accuracy of predictions remain on the order-of-magnitude or larger.

Due to the spherical and cylindrical nature of most blasts, the effect of curvature losses have been included
in most studies. However, Lee and Higgins [1] highlighted the importance of unsteady terms by pointing
out that curvature cannot explain failure in planar blasts. The significance of unsteady terms was compared
to spherical curvature by Eckett et al. [2], who showed that curvature losses are less important than the
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unsteady terms in blast failure. Kasimov and Stewart [3] attributed the over-prediction of critical blast
energies in their model and others’, such as He and Clavin’s [4], which considered curvature losses without
unsteady terms, to the importance of unsteadiness and remarked that critical initiation conditions occur
before critical quasi-steady curvature.

Numerical investigations of planar blasts performed by Mazaheri [5] produced supercritical and critical
detonation initiation as mentioned above, but did not show as clear of a demarcation between initiation
and failure at low activation energies. Subcritical blasts were defined by a decay to a near constant sub-CJ
speed, later initiated by the formation of an internal shock. Planar blasts in mixtures with higher activation
energies [5, 6] had a more distinct failure and did not initiate a detonation within the observed time period,
as did simulations using chain branching chemical kinetics [7], but instabilities also appear to play a role in
deciding if detonation initiation will occur [2, 6, 7].

The prediction of critical blast energy remains an open problem, with an order of magnitude agreement
between theory and experiment in the best of cases. While previous work points to the importance of
unsteady terms, stability, and choice of chemical model, the problem remains difficult to probe due to the
complexity of the Euler equations. This study proposes to simplify the direct initiation problem through the
use of a toy model, such as Fickett’s detonation analogue [8], in order to gain further understanding on the
direct initiation of detonations.

Toy models and asymptotic models of detonations were introduced by Fickett [8] and Majda [9]. They
consist essentially of Burgers’ equation with an added source term to mimic energy release and have seen a
number of successes in reproducing detonation phenomena, from the steady structure of eigenvalue detona-
tions [10], to pulsating instability and the period-doubling route to chaos [11, 12].

2 Model

On example of a simplified model is Fickett’s detonation analogue [8], whose one-dimensional hydrody-
namic equation takes the form

∂tρ+ ∂xp = 0 with p =
1

2
(ρ2 +Qλr)

as equation of state, where t and x are the time and space variables, ρ is the state variable, Q = 1 is the heat
release, and λ is the reaction progress variable which ranges from zero behind the shock when unreacted to
one when fully reacted. This model has two families of waves, forward-travelling characteristics travelling
at a speed ρ, and stationary particle paths along which energy is released. The model lacks the rear-facing
characteristics and strong non-linearities of the Euler equations while maintaining important dynamics of
compressible flows.

The hydrodynamic model must be coupled to a chemical model for the energy source. The majority of direct
initiation investigations using the Euler equations have simplified the chemistry to a one-step Arrhenius
reaction. Many choices for chemical model are possible; for example, a two-step induction-reaction can
be chosen to approximate the chemistry, consisting of a neutral induction period (no heat release) with an
Arrhenius rate dependent on the instantaneous shock speed beginning at the shock, followed by fixed-rate
exothermic reaction, or “fire”, that begins once the induction period is complete. The induction and reaction
rates considered in this paper (subscripts i and r, respectively) are

ri =
dλi
dt

= H(1− λi) exp
(
Ea

(
D

DCJ
− 1

))
and rr =

dλr
dt

= (1−H(1− λi))k(1− λr)ν (1)
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where H is the Heaviside function, Ea is the activation energy, D is the shock front speed equal to DCJ =√
Q at steady-state, k is the reaction rate prefactor, proportional to the ratio of induction and reaction lengths,

and ν = 1/2 is the reaction order. The stability of this chemical model in Fickett’s detonation analogue has
previously been presented by Bellerive et al. [13–15], and depends on both the activation energy and the
reaction rate prefactor k, which controls the ratio of induction and reaction lengths. Stable, pulsating, and
chaotic detonations are possible.

3 Methodology

The system of equations were solved numerically in the shock-fixed frame of reference using a second
order Godunov scheme with a minmod flux limiter and an extrapolation outflow. A resolution of 200 points
per steady state induction zone length was used, and the time step size was selected using the Courant-
Friedrichs-Lewy condition with CFL = 0.8.

The flow was initialized to approximate the blast decay at an early time t0 = 10−3 with an expansion wave
connected to the shock front such that

ρ(x, t0) ≈

{
0 if xs < x

max
(
2D0
xs
x+ 2D0, 0

)
otherwise

and λi,r(x, t0) ≈

{
0 if xf < x

1 otherwise

where the initial shock speed D0 and position (in the lab frame of reference) xs were approximated from
equation 2 (explained in discussion, section 5), and the fire position was approximated by xf ≈ D0(t0 −
tign,0) with tign,0 ∼ exp(Ea(1 − D0/DCJ)), found by first-order integration through the induction zone
(equation 1) at small times. Decay from these initial conditions agree well with theory at early times (figure
1) and an example initial profile is found in the t0 inset of figure 2.

4 Results

The results in figure 1 show the front speed as a function of time for three different blast energies on a log-
log plot. The activation energy and the induction to reaction length ratio were selected to be in the highly
unstable region [15], and the blast energies were chosen to highlight three regimes of reactive blast decay.
A supercritical detonation initiation is seen at the largest blast energy (Eb = 4). Two critical regimes are
shown at intermediate blast energies, with the larger case (Eb = 3) resembling a special behaviour found in
the Euler equations. Following the first pulsation, the blast enters a long sub-CJ quasi-steady period, leading
to failure in the Euler case [2, 5, 7], while nearby cases (Eb = 4 and 2.5) continue to pulsate; a slightly
delayed initiation occurs in this case. The “subcritical” case is seen at the smallest blast energy. This blast
decays to nearly half of the CJ speed where it remains mostly constant until two impulses (arrival of internal
shocks at the front) initiate a pulsating detonation over ten times later than the supercritical case (two orders
of magnitude after DCJ was reached).

5 Discussion

To model the blast decay, start with the simplest case of an inert blast, initialized by a large ρb and thin
xb in the shape of a top-hat wave, with ρ0 = 0 outside. The expansion fan, travelling at a speed ρb,
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Figure 1: Numerical solutions for three different blast energies yielding supercritical and critical detonation
initiations, and the subcritical case (detonation failure); inert and CJ blast decays shown for lowest blast
energy case; horizontal dashed lines placed at DCJ = 1 and DCJ/2; (Ea = 10, k = 5)

will catch up to the shock of speed ρb/2, which will then begin decaying. Following this intersection,
the shock jump condition, written as D = ẋs = (pvN − p0)/(ρvN − ρ0), gives an ordinary differential
equation for shock position xs by attaching the expansion fan state to the post shock state, ρvN = xs/t.
The integration constant is found with the fan-shock intersection. The same procedure can be followed for
a reaction occurring completely within the discontinuity, like a CJ wave, now with pvN = ρvN + Q, and
solves to

xs =
√

4Ebt+Qt2, D =
2Eb +Qt√
4Ebt+Qt2

, and Ḋ =−
4E2

b

(4Ebt+Qt2)
3
2

, (2)

where the blast energy 4Eb = 4(ρbxb/2) comes from the integration constant. The inert case is retrieved
when Q = 0 and the blast decays self-similarly, setting the lower bound for the blast decay. The CJ decay
case, Q = 1, reveals the upper bound for the blast decay (instabilities aside), and is equivalent to a decay
where the reaction zone is tied to the front. The two boundaries are compared to numerical simulations in
figure 1 which shows the CJ decay agrees well with the supercritical case, and the inert decay describes the
subcritical case until D ∼ DCJ/2 (better agreement with lower Ea, see top inset of figure 2 for example).

Subcritical initiation can be explained by tackling the nearly constant states (shown in figure 2) in a piece-
wise fashion. Assume the lead shock quickly decays to DCJ/2, the state behind the fire is estimated as an
expansion, the fire as an initially slow discontinuity with a jump, and a constant state to the shock (figure 2,
inset t = 10). A series of events follows that lead to initiation: the first particle shocked atDCJ/2 reacts and
the fire begins moving at DCJ/2. The moving fire creates an internal shock (inset t = 17) which catches the
front, accelerating reaction rates and the fire. While a new internal shock from the accelerated fire reaches
the front (inset t = 25), the first particle shocked since acceleration reacts, and the fire speed changes (inset
t = 28). Although this type of analysis helps predict subcritical initiation time, it does not identify at what
blast energies this will happen, nor the exact initial state described above.
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Figure 2: Characteristics diagram in the lab frame of reference (−9 ≤ x − xs ≤ 0) with characteristics
in black, the shock front in magenta, the ends of the induction and reaction zones in green and blue, and
particle paths that follow vertical lines (along which reactions take place, not shown); a magnification of
early times is centred at the bottom; insets show profiles of ρ and λ on the right and blast speed at the top,
see insets for their legends; (Eb = 5/32, Ea = 5.5, k = 100; ostensibly similar to the subcritical case of
figure 1, with more distinct features and shorter scales)
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6 Conclusion

Fickett’s detonation analogue with a two-step induction-reaction model and Arrhenius sensitivity was used
as an example of how simplified models may help understand direct initiation. The simplified model recre-
ates many features of one-dimensional Arrhenius blast initiations, such as the super-, sub- and critical initi-
ation regimes, especially a low activation energy.
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