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1 Introduction

Because of their ability to burn very lean mixtures, there has been significant interest in superadiabatic
flames recently. Significant work, experimental, numerical and analytical, is reviewed in [1]. Here, a steady
flame occurs in a long narrow tube exposed to a known temperature on its outside wall. The formulation is
similar to [1–6], but focus is on exact analytical solutions to the one-dimensional problem using a convection
model for heat transfer on the tube walls. The technique [1] is similar to ref. [7], but applied to the full tube
instead of half, and boundary conditions allow for superadiabaticity. The work differs from [2–5] in that a
closed form solution is obtained, restricted to a fixed flame location. Advantages of an analytical solution
are (1) that physics of the solution are clarified, such as, for instance, thicknesses of the various zones, and
(2) that it is more reliable and efficient than numerical solutions.

2 Formulation

Species and energy conservation are:

m
dȲF
dx̄
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Bρ̄2ȲOȲF e

−Ea/RuT̄g

MOMF
(2)

0 = ks
d2T̄s
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− h̄v
As

(T̄s − T̄g)− h̄w
Aw

(T̄s − T̄w), (3)
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With fluid temperature boundary condition T̄0 at left infinity, temperature outside the wall T̄w and species
BCs fully unburnt, ȲF0 and ȲO0 at −∞, and fully burnt at +∞. Scaling: temperatures by T̄1 − T̄0 =
ȲF0Q̄/cP and mass fractions by ȲF0 and ȲO0, and also:

x =

√
h̄v
Asks

x̄, J =
Asks
Agkg

, Γ =

√
ksAsmcp

kg
√
h̄v

, No =
h̄w
hv

As

Aw
(4)

dYF
dx

=
1

ΓLeF

d2YF
dx2

− ω, dYO
dx

=
1

ΓLeO

d2YO
dx2

− φω (5)

dTg
dx

=
1

Γ

d2Tg
dx2

+
J

Γ
(Ts − Tg) + ω, 0 =

d2Ts
dx2

− (Ts − Tg)−No(Ts − Tw) (6)

with LeF and LeO the fuel and oxidant Lewis numbers, and

ω =
Γkg
m2cp

Bρ̄2ȲO0YOYF e
−Ea/RuT̄g

MOMF
(7)

For single step high activation energy kinetics, the reaction zone is reduced to a thin layer at x = 0 where due
to heat release, the dimensionless fluid temperature gradient experiences a discontinuity −Γ, as determined
by integration over the thin layer [6].

3 Solution

Eliminating Tg,

d4Ts
dx4

− Γ
d3Ts
dx3

− (1 + J +No)
d2Ts
dx2

+ (1 +No)Γ
dTs
dx

+ JNoTs = −No

(
d2Tw
dx2

− Γ
dTw
dx
− JTw

)
(8)

The characteristic equation is:

r4 − Γr3 − (1 + J +No)r
2 + (1 +No)Γr + JNo = 0 (9)

The inverse of each of the roots of the characteristic equation determines the thickness of the various relevant
zones. Closed form solutions can be obtained in two interesting cases: for No = Γ2, and for the limit cases
of a small J . Using perturbation, solutions can also be obtained in the neighborhood of these limits. The
case where No = Γ2 is only a special case in that, after factoring r − Γ, in the resulting cubic equation, the
term in r2 is zero. Otherwise, the solution would remain the same as below for the general case, if factoring
r − r0, where the root r0 would be obtained numerically. Thus the only real particularity of the case solved
below is that it can entirely be solved analytically. Admittedly No = Γ2 may not be realistic for large Γ.
The current dimensionless formulation is not appropriate with the limit cases of Γ either large or small.

4 Γ and J large, with ratio of order unity

Then, calling G = J/Γ, the problem is reduced to third order, hence an analytical solution:

d3Ts
dx3

+G
d2Ts
dx2

− (1 +No)
dTs
dx
−NoTs = −No

(
dTw
dx

+GTw

)
(10)

The characteristic equation is:

r3 +
J

Γ
r2 − (1 +No)r −No = 0 (11)
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5 No close to Γ2

For No = Γ2, one root is r0 = Γ. The other ones are solutions of

r3 − (1 + Γ2 + J)r − JΓ = 0 (12)

Using the Tartaglia method, these roots are

ri = 2r̄1/3 cos
ϕ+ 2(i− 1)π

3
(13)

with

r̄ =

(
1 + Γ2 + J

3

)3/2

, cosϕ =
JΓ

2r̄
=

33/2

2

JΓ

(1 + Γ2 + J)3/2
(14)

As a function of J , analyzing its derivative, cosϕ is maximum for J = 2(1 + Γ)2 with value cosϕmax =
Γ/
√

1 + Γ2. Thus 0 ≤ ϕ/3 ≤ π/6, as also shown in Fig. 1. Since | cosϕ| ≤ 1 unconditionally, all three
roots are real. In view of the value of ϕ/3, one root r1 is positive while r2,3 are negative. Their value is
shown in Fig. 2.

Figure 1: ϕ/3 vs. Γ, for J from 0.01 to 100.

Near root r, from Eq. (9),

dr

dNo
=

r2 − Γr − J
4r3 − 3Γr2 − 2(1 + J +No)r + (1 +No)Γ

(15)

For r = Γ, with No = Γ2,
dr

dNo
=

J

(1 + 2J)Γ
(16)

For the other roots, still with No = Γ2, and using the characteristic equation, one can show that the denom-
inator also remains nonzero, so that perturbations can be used for No close to Γ2.

For a constant Tw, accounting for BCs at ±∞, the solution has the form

Ts = T0 + C0 exp Γx+ C1 exp r1x for x < 0, Ts = Tw + C2 exp r2x+ C3 exp r3x for x > 0 (17)
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Figure 2: Roots, r1 left, −r2 middle, −r3 right, vs. Γ, for J from 0.01 to 100.

Continuity of Ts and its derivative across yields T0 + C0 + C1 = Tw + C2 + C3 and ΓC0 + r1C1 =
r2C2 + r3C3. Continuity of Tg, and the jump in dTg/dx at the flame result in:

C0Γ2 + C1r
2
1 = C2r

2
2 + C3r

2
3, Γ3C0 + C1r

3
1 − C2r

3
2 − C3r

3
3 = −Γ (18)

with solution

C0 =
−r1r2r3(Tw − T0)− Γ

(Γ− r1)(Γ− r2)(Γ− r3)
(19)

C1 =
[r2r3(Tw − T0) + 1]Γ

(Γ− r1)(r1 − r2)(r1− r3)
, C2 =

−[r1r3(Tw − T0)− 1]Γ

(Γ− r2)(r2 − r1)(r2 − r3)
, C3 =

−[r1r2(Tw − T0)− 1]Γ

(Γ− r3)(r3 − r2)(r3 − r1)
(20)

For the fluid temperature, a similar expression is obtained but with coefficients Bi:

B0 = (1 + 2Γ2)C0, B1 = (1 + Γ2 + r2
1)C1, B2 = (1 + Γ2 + r2

2)C2, B3 = (1 + Γ2 + r2
3)C3 (21)

Figures 3 to 5 show fluid and tube temperatures for J from 0.01 to 100., respectively for Γ = 0.5, 1.0 and
2.0, and for the common case where Tw = T0. In that range the assumption N = Γ2 remains reasonably
realistic.
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Figure 3: Left: fluid temperature; Right: wall temperature. Γ = 0.5, J from 0.01 to 100.

Figure 4: Left: fluid temperature; Right: wall temperature. Γ = 1.0, J from 0.01 to 100.

6 Arbitrary No

For arbitrary N0 one needs to solve numerically for the first root. Alternatively, it is much easier to pick a
root value, and calculate the corresponding value of No. At least for higher Γ, the value above corresponds
to unrealistically high heat transfer coefficient with the wall. So focusing to lower value, we pick r0 = αΓ
and focus on relatively small α. Replacing in the characteristic equation, and solving for No,

No =
Γ2α[(α2Γ2 − 1)(α− 1)− Jα]

Γ2α(α− 1)− J
(22)

Then for the other three roots, a solution using the Tartaglia method is readily implemented, but the third
order equation now includes a term in r2. Thus the solution will be obtained using the very same procedure
as in Fachini and Bauwens [1]. It is easier to use r0 as the actual independent variable, for which a closed
form value of No is readily computed, but to present results using No as the independent variable. Results
will be presented for realistic values of No for higher values of Γ and as above, for a range of values of J .
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Figure 5: Left: fluid temperature; Right: wall temperature. Γ = 2.0, J from 0.01 to 100.

7 Summary

A closed form entirely analytical solution was obtained for the problem of one-dimensional premixed flame
in a long tube with external heat transfer to the environment, using a physical model in which an empirical
heat transfer coefficient describes the heat exchange on both sides of the wall. A few results were presented,
illustrating the strength of the approach. The key advantage of an analytical solution is that it readily allows
for systematic investigation of the parameter space, or at least of large subsets. The analytical solution is
much more cost-effective than numerical solutions which entail being redone for any individual cases.
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