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1 Introduction

The stochastic development of discrete autoignition kernels within a combustible gas is known as weak
ignition. In contrast to weak ignition, the strong ignition process is both uniform and regular; figure 1
shows simulations [6] of weak and strong ignition in a shock tube system. Strong ignition is generally
the desired autoignition regime for chemical kinetic studies and homogeneous charge compression ignition
(HCCI) engines. Weak ignition has been found in both shock tubes (ST) [1–6] and rapid compression
machines (RCM) [7–10]. Furthermore, the notion of weak ignition has been extended to characterize the
highly unstable and irregular nature of certain detonation waves [11]. Hence, the essential processes of
weak ignition are posited to be inherent in many configurations.

The best features to classify these ignition varieties has been moot for over five decades [1, 2, 12, 13],
and there is no current consensus on the most relevant features that predict the combustion mode. Meyer
and Oppenheim [2] used the gradient in temperature of the ignition delay to demarcate the weak ignition
regime. Subsequently, Sankaran et al. [13] delimited the weak ignition regime by comparing the laminar
flame speed to the speed of the autoignition front. Additionally, Gu et al. [12] observed that the ignition
variety depends on the thermoacoustic resonance of a hot spot. Furthermore, the SWACER mechanism of
Lee et al. [14] has been used to describe reaction dynamics of an ignition kernel [6, 15].

Hence, it is the objective of this work to apply state classification to elucidate the most relevant features
in predicting this phenomenon in STs, RCMs, and detonations using experimental data aggregated from the
literature [2, 4, 5, 7, 9, 16, 17] and detailed simulation data [6]. Since these configurations are unique in their
inherent fluid dynamics, this work will analyze the classification problem both separately and together to
draw conclusions about the universality of the proposed features. From this, the relative importance of the
examined features are measured and an interpretation of the prevalent physical processes is made. Finally,
the evidence of existence of a universal governing parameter is investigated.
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2 Methodology

In the simplest reduction of this work, it is a binary classification problem; that is, given a set of features, is
the ignition variety strong or weak? For this, the following feature set is considered:

F =

{
τIGN

τE
,
Q

RT
,Θ,Sa, ξ,Pr, γ,M,Re

}
, (1)

where the ignition delay and excitation times are denoted by τIGN and τE, respectively; Q is the amount of
heat deposited during ignition; R and T are the universal gas constant and temperature, respectively; and
the ignition sensitivity is given by Θ = ∂ ln τIGN/∂ lnT . The Sankaran number [13] compares the laminar
flame speed of a mixture, SL, to the speed of the reaction front, uRF: Sa = SL

uRF
= SL

∂τIGN
∂T

∂T
∂x , where x is

the direction of propagation for the reaction front, and the Zeldovich relation [18] is used for the speed of
the reaction front is applied; furthermore, it is assumed that ∂T/∂x ∝ T/L, where L is the reference length
scale (i.e., the bore diameter for STs and RCMs and the cellular length scale for detonations [19]); the flame
speed is estimated using an analytical relation [20].

Similarly, the chemical resonance [12], ξ, compares the speed of sound in the mixture, a, to the speed
of the reaction front: ξ = a∂τIGN

∂T
∂T
∂x , where ∂T/∂x ∝ T/L as with the Sankaran number.

Finally, the Prandtl number, specific heat ratio, Mach number, and Reynolds number are denoted by
Pr, γ, M, and Re, respectively, and the convective speed, u, is used for the computation of the Mach and
Reynolds number (i.e., the post-shock speed for the ST and detonation and the piston speed for the RCM).
It also could indicate a covariance with a hidden feature not examined.

The logistic regression [21] is the linear classifier used for this work. The logistic regression is a discrete
analog of the better known least-squares regression, and is used extensively for classification problems. Due
to the self-similarity of the physical processes of ignition, the presented features are combined using a power
law: η =

∏|F|
i=1 χ

wi
i , where χi ∈ F , and η is the classification criterion (e.g., η >const. =⇒ weak ignition).

Defining φi as the natural log of χi, φi = lnχi, a linear model is developed as β = ln η = w>φ, where
w is the weight vector to be determined by the logistic regression. Since the natural log function is strictly
monotonic, β can be used with the proposed linear classifier.

Additionally, the features are ranked using forward-stepwise selection [21]. Forward-stepwise selection
is a greedy optimization algorithm, which selects features one-at-a-time to be used for the classification
problem. More explicitly, in the first step of the algorithm, the set of all features are considered individually
for the classification problem, and the single feature that yields the lowest test error is added to the feature
set. The algorithm continues in this manner adding one feature at a time to the set while using the features
previously added for the classification. What one obtains is an effective ranking of the most important
features going from the first feature added to the last.

The data used in this work is summarized in Table 1. The ignition delay and excitation times are
extracted from the data using the mechanisms provided in Table 1. Additionally, two detailed simulations
of stoichiometric hydrogen/oxygen ignition in a shock tube [6] are utilized; these are shown in Fig. 1.
Figure 1(a) shows a strong ignition event found in simulation while Fig. 1(b) shows a weak ignition event.
The reacting simulations provide a comparison of the two different methodologies to predict: a data-driven
approach, which makes extensive use of experimental data; and a first-principles high-fidelity simulation.
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Table 1: Summary of the aggregated experimental data. The chemical mechanism used is cited in the Fuels
column.

Author Configuration Fuels
Yamashita et al. [5] ST Acetylene et al. [22]
Penyazkov et al. [4] ST Propane [22]

Meyer and Oppenheim [2] ST Hydrogen [23]
Huang et al. [24] ST Methane [25]

Mansfield et al. [9] RCM Syngas [25]
Walton et al. [7] RCM Iso-Octane et al. [26]
Radulescu [17] DET Hydrogen [23], Methane [25], Acetylene [22], Ethylene [22], Propane [22]

Austin [16] DET Hydrogen [23], Ethylene [22], Propane [22]

(a) Strong Ignition. T = 1100 K and p = 3 bar. (b) Weak Ignition. T = 1050 K and p = 3 bar.

Figure 1: Evolution of the temperature field during the ignition process for two stoichiometric H2/O2

mixtures. Cases taken from [6]. The magnitude of the temperature gradients is overlaid.

3 Results

The results of the forward-stepwise selection algorithm are shown in Fig. 2. The left bars show the test error
if each feature is added to the feature set. The test error is defined as

εTEST =

∑|XTEST|
i=1 1 {ŷi 6= yi}

|XTEST|
(2)

where 1{...} is the indicator function and returns 1 if the statement is true and 0 otherwise, ŷi is the label
predicted by the regression (i.e., weak or strong), and yi is the known label. The test set is separated from
the data set used for the regression to reduce model bias.

The right error bars shows how the test error of the given feature compares to the test error when the
other remaining features are added. This metric seeks to clarify how much better the added feature is to
the remaining features; that is, a value near 1 indicates that the selected feature is not much better than the
remaining features, and the algorithm is essentially randomly selecting features.

The large error bars in the detonation data set is attributed to the sparsity of the data compared to the other
configurations. As shown in the figure, features involving the combustion time scales and sensitivity prove
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Figure 2: Results of the forward-stepwise selection of features. Features are selected in order going from
left to right. The mean test error, 〈εTEST〉, is the mean of all the test errors produced when each feature that
is not currently in the set is added. The error bars are determined by bootstrapping the data set to determine
the variance in the test error.

to be the most efficacious (i.e., τIGN/τE , ξ, and Θ), and are selected by the algorithm first; this indicates
that the ignition phenomena is most strongly influenced by the chemical time scales; it also indicates that
necessary gasdynamic perturbations are not well-captured with given features.

Additionally, it is shown that the Prandtl number significantly influences the classifier for all configu-
rations except the RCM; it is noted that the RCM only needs the feature τIGN/τE to classify the ignition
regime. The significance of the Prandtl number may indicate that the competition between viscous and
thermal diffusion plays an important role.

Furthermore, the figure demonstrates that at most two non-dimensional groups are sufficient to classify
the ignition variety using the proposed power-law model. This gives credence to the possibility of a universal
governing parameter.

Additionally, upon further inspection of the ranking of features produced at each step of the algorithm,
a clear preference for ξ over Sa arises indicating that the speed of sound is a more substantial velocity scale
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than the laminar flame speed; this implies that the thermoacoustic feedback of the SWACER mechanism
may play a substantial role given the interpretation of these numbers.
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Figure 3: Plot of the decision boundaries created for two selected features. The entire feature and data set
is used.

The decision boundaries produced by the logistic regression classifier for two selected features are
shown in Fig. 3. The chemical time scale ratio, τIGN/τE, and the Reynolds numbers, Re, are shown since
the forward-stepwise selection algorithm selected these two features to be the most and least effective, re-
spectively. It is shown that the slope of the decision boundary in Fig. 3(a) is quite shallow indicating that
a small change in the chemical time scale ratio could produce a change in classification. For the Reynolds,
the opposite is true. Fig. 3(b) shows that a rather substantial change in the Reynolds number is necessary
to produce a change in the classification; more precisely, the ordinate of Fig. 3(b) 48 orders of magnitude
while Fig. 3(a) spans only 7 with the abscissa being relatively similar in both cases.

From Fig. 3(a), it is apparent that the data is not linearly separable; while significant clustering is demon-
strated for the chemical time scale ratio, excursions deep into the strong and weak regimes are shown. This
is indicative that the power-law model is insufficient to classify all the data; a more advanced model such
as an artificial neural network could produce superior results. However, it is argued that the simple linear
model captures most of the sensitivities and that the majority of the data respects the given boundary.

Additionally, the detailed simulations correspond to the classifier’s predictions; the strong ignition case
is shown to be close to the decision boundary, and some inhomogeneous characteristics are demonstrated
in Fig. 1(a). Finally, weak ignition is shown to occur for large values of the chemical timescale ratio as
expected from the theory.

4 Conclusions

The best features to classify the weak ignition regime is a current topic of interest in the combustion com-
munity. This work used state classification techniques to investigate several proposed features and to tease
out sensitivities via a data-driven approach. From this, it was found that the features that represent the
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combustion timescale and sensitivity performed the best for all configurations examined; however, features
which better incorporate gasdynamic fluctuations are necessary for a complete characterization. Finally, no
significant improvement was found in the test error for more than two features, which suggests that the cor-
rect classification of the combustion process is low-dimensional and that a universal governing parameter is
plausible.
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