
26th ICDERS July 30th–August 4th, 2017 Boston, MA, USA

The critical conditions for the onset of pool-fire puffing

Wilfried Coenen, Daniel Moreno-Boza, Antonio L. Sánchez
University of California at San Diego, La Jolla, CA 92093, USA

1 Introduction

Pool fires are known to exhibit a self-sustained oscillatory behavior, shedding large toroidal coherent struc-
tures at a well established frequency, a phenomenon referred to in the literature as “puffing”. This behavior
influences the rate of air entrainment, the radiated heat output, the flame height and also the spreading of the
flame. Pool-fire puffing has been studied extensively in the literature (e.g. [1–9]), and it is well known that
under normal conditions of temperature and pressure typical hydrocarbon fuel pools of a few centimeters in
diameter puff with a frequency on the order of 10 Hz. Nevertheless, no detailed account has been given of
the critical conditions for the onset of puffing. In that regard, for the physically similar problem of flickering
jet diffusion flames, the authors have recently shown that this oscillatory behavior corresponds to a hydro-
dynamic global instability of the flow, the onset of which can only be predicted with a stability analysis that
is also global in nature, taking into account the 2D nonparallel character of the flow [10].

The objective of the present work is to apply the same technique to a small laminar pool fire to determine
the critical conditions for puffing. Contrary to a jet diffusion flame, where momentum is injected with the
fuel, and consequently the jet Reynolds number plays a role along with the Froude number, in a pool fire
the momentum that is transferred to the flow by the evaporation of fuel is negligible. Therefore, a single
parameter, expressed as a Rayleigh number, will be shown to characterize the flow—apart from the inherent
thermochemical parameters. In particular, puffing occurs when this Rayleigh number exceeds a critical
value. For given burning conditions, the latter is directly equivalent to a critical pool diameter.

In the next section, a detailed formulation will be given to describe the dynamics of small laminar pool fires,
accounting for the nonunity Lewis number and vaporization characteristics of typical liquid hydrocarbon
fuels. The global linear stability analysis is presented in section 3, including the prediction for the critical
Rayleigh number. Finally, concluding remarks are given in section 4.

2 Governing equations for the description of laminar pool-fire dynamics

Consider the burning of a round pool of liquid fuel with radius a in a quiescent air atmosphere with tem-
perature TA and density ρA. In the presence of buoyancy, the density differences of order unity associated
with the temperature increase caused by the chemical heat release induce velocities of order vg = ga2/νA,
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where g is the gravitational acceleration and νA is the ambient kinematic viscosity. The Reynolds number
based on this velocity is the Grashof number Gr = ga3/ν2A, measuring the relative effects of convective
acceleration and viscous forces. The accompanying Rayleigh number Ra = Pr Gr = ga3/(νAκA), based on
the thermal diffusivity of the ambient air κA is the corresponding Peclet number that measures the ratio of
convective and diffusive energy transport rates. These two parameters, related through the Prandtl number
Pr = νA/κA ' 0.7, characterize the structure and the dynamics of pool fires. In particular, the onset of
puffing occurs at a critical value Grc = Rac/Pr, to be determined below.

The pool radius a and the characteristic velocity vg will be used as scales for the dimensionless axisymmetric
cylindrical coordinates x = (x, r) and velocity v = (vx, vr). The time and the pressure differences from
the quiescent ambient hydrodynamic distribution are scaled with tg = a/vg and ρAga, giving the variables
t and p, respectively. The continuity and momentum equations then become

∂ρ

∂t
+∇ · (ρv) = 0, (1)

Ra
Pr
ρ

Dv

Dt
= −∇p+ (1− ρ)ex +∇ · [µ(∇v +∇vT )], (2)

where D/Dt = ∂/∂t + v · ∇ denotes the substantial derivative and ρ and µ are the density and viscosity
scaled with their ambient values.

The reaction between the fuel and the oxygen of the air occurs according to the global irreversible step
F+sO2 → (1+s)P+q′, where s and q′ are the mass of oxygen consumed and the amount of heat released
per unit mass of fuel burnt. Our analysis employs the fast-reaction limit in which the chemical-reaction
terms in the conservation equations for reactants and energy appear as Dirac delta distributions along a
flame surface separating an outer ambient region with no fuel vapor from an inner region surrounding
the pool surface with no oxygen. To facilitate the analysis of the fast-reaction limit it is convenient to
construct two chemistry-free conservation equations by eliminating the reaction terms through appropriate
linear combinations [11, 12]. In this manner, the conservation equations become

Ra ρ
Dξ

Dt
= ∇ · (ρκ∇ξ) , (3)

Ra ρ
DZ

Dt
=

1

Le
∇ · (ρκ∇Z̃), (4)

involving a normalized excess thermal and chemical enthalpy ξ, which is zero in the air atmosphere and
unity on the fuel surface, a diffusion-weighted mixture fraction Z̃, and the classical mixture fraction Z,
defined respectively as

ξ =
T − 1 + (q/S)(YO − 1)

TB − 1− q/S
, Z̃ =

SYF/LeF − YO + 1

S/LeF + 1
, Z =

SYF − YO + 1

S + 1
. (5)

In the former, T is the temperature scaled with TA, and YF and YO = YO2
/YO2A

are the mass fraction of fuel
vapor and oxygen, the latter normalized with its value YO2A

' 0.232 in air. The thermochemical parameters
s and q′ defined above appear through the reaction-rate factors S = s/YO2A

and q = q′/(cpTA), where
cp denotes the specific heat at constant pressure, assumed to be constant in the following analysis. The
parameter S, on the order of S = 15 in hydrocarbon combustion, represents the amount of air needed to
burn the unit mass of fuel. The other parameter, q, is the heat release per unit mass of fuel scaled with the
ambient enthalpy, which takes fairly large values for typical fuels, such that q/S ∼ 7.
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Just like the other transport properties, the thermal diffusivity κ has been scaled with its ambient air value.
The presumed power laws

µ = ρκ = T σ (6)

will be used below for the temperature variation of the transport properties, with σ = 0.7. A Fickian model
has been used for the diffusion velocities of the reactants, a sufficiently accurate approximation in fuel-air
combustion, where the dominant presence of nitrogen molecules simplifies the description of molecular
transport. Whereas a unity Lewis number has been employed for oxygen, an excellent approximation under
most conditions, a non-unity Lewis number LeF > 1 is used for the fuel, as is needed for accuracy in
computations of most hydrocarbon and alcohol fuels. The modified Lewis number Le in (4) is defined as
Le = (S + 1)/(S/LeF + 1).

The motion induced is very slow, and involves small spatial pressure variations that can be neglected in the
first approximation when writing the equation of state

ρT = [YF (WA/WF − 1) + 1]−1 . (7)

The molecular mass of most liquid fuelsWF is significantly larger than that of the airWA, so that the density
differences induced by the presence of the fuel vapor have been considered for increased accuracy in (7).

To solve (3) and (4) coupled with (1) and (2) and supplemented with (6) and (7) we need to relate T ,
YF, and Z with ξ and Z̃. These relations can be obtained using the fast-reaction condition YFYO = 0
of non-coexistence of YO and YF, which are simultaneously zero at the flame, given by the iso-surface
Z = ZS = 1/(1 + S), or Z̃ = Z̃S = 1/(1 + S/LeF), as follows from the definitions (5) of Z̃ and Z. Thus,

for Z̃ ≥ Z̃S : YO = 0, YF =
Z − ZS

1− ZS

=
Z̃ − Z̃S

1− Z̃S

, T − 1 = (TB − 1) ξ +
q

S
(1− ξ); (8)

for Z̃ ≤ Z̃S : YF = 0, 1− YO =
Z

ZS

=
Z̃

Z̃S

, T − 1 = (TB − 1) ξ +
q

S

(
Z̃

Z̃S

− ξ

)
. (9)

Equations (8) and (9) provide piece-wise linear relations for the evaluation of YF, YO, and Z in terms of Z̃.
In addition, the last relation in the equations gives T in terms of Z̃ and ξ.

The boundary conditions that complete the definition of the problem are those corresponding to a quiescent
surrounding air atmosphere, an impermeable and chemically inert surface surrounding the fuel pool, and
fuel vaporization at the pool surface occuring with a prescribed boiling temperature TB and dimensionless
latent heat of vaporization lv = Lv/(cpTA):

vx = vr = p = ξ = Z̃ = 0 as |x| → ∞ for x 6= 0 (10)

vx = vr = ∂ξ/∂x = ∂Z̃/∂x = 0, at x = 0 for r > 1, (11)

vr = ξ − 1 = 0
−T σB ∂ξ/∂x = αRa ρvx

−T σB ∂Z̃/∂x = LeF Ra ρvx(1− Z̃)

 at x = 0 for r < 1, (12)

where α = (lv + TB)/(q/S + 1− TB).
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Figure 1: Steady solution of a pool fire for Ra = 1000, S = 7.44, LeF = 2.60, TB = 1.12 and q/S =
7.7. Left: isotherms with equispaced temperature levels T = (2, . . . , 7), indicated on the corresponding
contours, with equally-spaced intermediate values in between. Right: streamlines. The stoichiometric line
Z̃ = Z̃S is represented by the thick black line.
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Figure 2: (a) Steady methanol flame shapes Z̃ = Z̃S for different Rayleigh numbers (indicated in figure),
and (b) accompanying eigenvalue spectra for stable (Ra = 7000), marginally stable (Ra = Rac = 10500),
and unstable (Ra = 15000) configurations. The leading eigenvalue is marked in red in the critical case, with
its associated flame shape also depicted in red.
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3 Puffing as a global hydrodynamic instability and the determination of its onset

Following the recent analysis of flickering diffusion flames [10], we consider the puffing of pool fires as the
manifestation of an axisymmetric hydrodynamic global instability, the onset of which can be determined by
means of a linear global stability analysis. It is useful to recast the equations of motion, together with the
corresponding boundary conditions, equation of state, and constitutive relations, in the compact form

∂q

∂t
= F(q), (13)

where q = (v, p, Z̃, ξ) is the state vector and F is a nonlinear differential operator, representing the steady
counterpart of the continuity (1), momentum conservation (2), and passive scalars conservation equations (3)
and (4). First, a basic state q̄ = (v̄, p̄, ¯̃Z, ξ̄) is defined as the steady solution of the governing equations, i.e.
F(q̄) = 0. Figure 1 shows an example of such a basic state. Then, small perturbations are added in the form
of global 2D temporal Fourier modes as q = q̄ + εq̂ e−iωt with ω = ωr + iωi. Substitution of this modal
decomposition in (13) and subsequent linearization yields at O(ε) a generalized eigenvalue problem that
determines (ω, q̂). If the growth rate of the most unstable eigenvalue is positive, perturbations will grow in
time and the flow is asymptotically unstable. On the contrary, if all eigenvalues have negative growth rates,
the flow is asymptotically stable. For a description of the numerical methods that are used to discretize the
governing equations, find the basic state, and solve the eigenvalue problem, we refer to [10].

Figure 2 shows how the steady flame shape and corresponding eigenvalue spectrum changes with the
Rayleigh number Ra, which is, once a certain fuel—methanol in this case—is chosen, the only govern-
ing parameter of the problem. The growth rate increases with the Rayleigh number, becoming positive at a
critical value Rac = 10500. Recalling the definition of the Rayleigh number, Ra = ga3/(νAκA), it can be
seen that for a methanol pool fire burning in an air atmosphere under normal temperature and pressure, this
critical Rayleigh number translates into a critical diameter 2a = 1.4 cm.

Figure 2(b) also shows that the frequency ωr of the instability mode, represented in dimensionless form as
St = ωr/π, decreases with the Rayleigh number. This is in agreement with experimental observations [8]
that find that the characteristic frequency of the self-sustained puffing oscillations decreases with the size
of the pool fire. Furthermore, at criticality, our computations for methanol show that St = 0.004, which
corresponds to a puffing frequency under normal conditions of 9 Hz.

4 Concluding remarks

We have given a realistic description of the dynamics of small laminar pool fires, accounting for the nonunity
Lewis number and vaporization characteristics of typical liquid hydrocarbon fuels. In the description, once
a certain fuel has been chosen, the only remaining governing parameter is the Rayleigh number Ra. By
means of a linear global stability analysis, we have shown that above a certain critical value Rac, a global
instability of the flow sets in, leading to periodic oscillations of the flow field with a frequency that decreases
with Ra.

Our computations show that for methanol, Rac = 10500, which, on Earth in an air atmosphere under normal
temperature and pressure, is equivalent to a critical pool diameter 2a = 1.4 cm. Furthermore, the puffing
frequency under these conditions is found to be 9 Hz. Although no specific experimental determination of
the onset of pool fire puffing has been found in the literature to compare our result with, it is encouraging that
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the smallest pool fires characterized in puffing experiments are typically of the order of a few centimeters in
diameter, with puffing frequencies of the order of 10− 15 Hz [8, 9]. It can be anticipated that the boundary
conditions on the wall surrounding the fuel pool have a considerable influence on the critical values. In that
regard, for comparison with experiments it may be interesting to change the adiabatic condition (11) to one
of constant temperature, as this is easier to achieve in an experiment. The authors are currently setting up
an experiment to verify the critical conditions, and are extending the analysis to other fuels.
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[12] A. Liñán, D. Martı́nez-Ruiz, M. Vera, and A. Sánchez, “The large-activation-energy analysis of ex-
tinction of counterflow diffusion flames with non-unity lewis numbers of the fuel,” Combust. Flame,
2016.

26th ICDERS – July 30th–August 4th, 2017 – Boston, MA 6


	Introduction
	Governing equations for the description of laminar pool-fire dynamics
	Puffing as a global hydrodynamic instability and the determination of its onset
	Concluding remarks

