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1 Introduction 

Given initial positions and velocities of particles in a cloud, we derive a similarity solution for the 
expansion of the particle in a vacuum. The conservation laws admit an inertial solution where u ~ r at a 
fixed time. In this case the similarity solution is u = usξ , where the similarity variable is 
ξ = r / rs = r / ust , and us  denotes the expansion velocity of the cloud boundary. This can be used to 
predict the inertial expansion of the particle cloud. The analytic solution can be used to compute the L2 
norm of numerical simulations of such cloud expansions. 

2 Similarity Solution 

 We consider the dispersion of a spherical cloud of particles in a vacuum, where . Under such 
circumstances the momentum equation acquires the form: 

          (1) 

This equation admits an inertial solution (Stanyukovich, 1960)1, (Kuhl & Seizew, 1981)2:  

              (2) 

that satisfies the PDE Eq. (1), that is: . Next, we assume that the boundary of the particle 

cloud expands at a constant radial velocity: . In this case, cloud radius and time are linked by the 
relation: 

           (3) 
 

                                                
1 K. P. Stanyukovich, Unsteady Motion of Continuous Media, Pergamon Press, London, 1960, 749 pp. (vid. esp. § 63. Expansion 
of Gaseous Sphere in a Vacuum, pp. 498-501 & Eq. 63:13). 
2 A. L. Kuhl and M. R. Seizew TNT explosions in a hard vacuum, Gasdynamics of Detonations and Explosions, Progress in 
Astronautics and Aeronautics 75 (ed. R. Bowen, N. Manson, A. Oppenheim, & R. Soloukhin), AIAA, 1981, pp. 227-241. 
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This allows us to construct a similarity variable: 

           (4) 

and a similarity solution: 

             (5) 

that is consistent with the inertial solution Eq. (2). The solution is depicted in Fig. 1. One can see that the 
velocity profile within the spherical cloud of particles varies linearly with radius, and equals  on the 
boundary. 

 
 

Figure 1. Similarity solution for inertial flow. 

3 Particle Cloud 

 We consider a 3-D Cartesian grid lattice:  with a uniform mesh spacing: 

. We assume the cloud is composed of spherical particles of diameter , initially 
located on the grid lattice points: 

          (6) 

Note that initially the particles are touching each other. From this lattice one can construct a sphere (S) or 
spherical shell (SS) of particles by enforcing the following conditions: 
 

* Sphere:    (100 radial particles in sphere)     (S) 

* Spherical Shell:     (5 radial particles in shell)          (SS) 
 
 
 
 

ξ ≡ r / rs

U ≡ u / us = f (ξ ) = ξ

us

ξ

ξ)

Rijk = {xi, yj, zk}
Δxi = Δyj = Δzk =1 d0 =1

Pijk = {xi, yj, zk}

1≤ ri / d0 ≤100
95≤ ri / d0 ≤100
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In other words, we accept the particles that satisfy (S) or (SS) and reject particles that violate (S) or (SS). 
We call this the initial particle cloud:  with particles at {ijk} locations that satisfy (S) or (SS). Assume 
that the velocity of the particles satisfy the similarity solution of Eq. (5). Then their velocities are: 

    where   &   (7) 

How the particles have acquired this velocity field comes from other physics modeling that is beyond the 
scope of this manuscript.  

 At some later time: , the cloud will have expanded to radius: . At this time the particles 
will be located at: 

        (8) 
with velocities: 

        (9) 

Thereby satisfying the similarity solution  of Eq. (3). Note that particle positions dilate linearly 
with time. 
 
4 Kinetic Energy 
 
 Using the similarity solution, the kinetic energy of the particle system may be calculated: 
 

       (10) 

              (11) 

5 Discrete Lagrangian Particle (DLP) Model 

 The similarity solution for the particle cloud, Eq. (8)-(9), models the particle expansion in a vacuum. 
If the particle cloud expansion occurs in an atmosphere, then the particles are subject to both drag and 
gravity along with heating from convective heat transfer and combustion with air. The particle system 
then obeys the conservation laws for Discrete Lagrangian Particles (DLP):  
 

Position:        for all particles p (12) 

Momentum:  mp(t) !v p(t) =DP (x p )+mp(t)g   for all particles p (13) 

Energy:     where   for all particles p     (14) 

Mass:   !mp(t) = − !sp(x p(t))     for all particles p (15) 
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Drag:   Dp(x p ) =
1
4
0.5ρ[u(x p )− v p(x p )] u(x p )− v p(x p ) πdp

2CD   (16) 

Drag Coefficient: CD ≡
Force
0.5ρu2A

= 0.48+ 28Re−0.85      (17) 

Heat Transfer:  Qp(x p ) = πdpµCdPr
−1(T −Tp(x p ))Nu     (18) 

Nusselt Coefficient: Nu = 2+ 0.6Pr1/3 Re       (19) 

Burning Rate (empirical):   !sp = cdp
2         (20) 

6 Solution for a Quiescent Atmosphere 

Assume a quiescent atmosphere where ρa =1.2mg / cc, ua = 0, Ta = 300K  with g = 0. Then the 
momentum equation for a particle takes the form: 

   

mp !v p = −0.5ρav p
2ACD

4
3
πrp

3ρp !v p = −0.5ρav p
2πrp

2Cd

!v p = −
ρa
ρp

3CD
8rp

v p
2

     (21) 

that is      !v p = −K v p
2      where  K = constant = ρa

ρp

3CD
4dp

  (22) 

This is an ordinary differential equation that specifies the temporal evolution of the particle velocity 
subject to drag. The solution of (52.) is 

Drag Solution:    v p(t) =
−K vp

0 îp
(t0 − t)vp

0+1
        (23)3 

Next consider the expansion of the particle cloud in a vacuum with gravity g. The momentum equation 
takes the form 

      mp(t) !v p(t) =mp(t)g        (24) 

Gravity Solution:     v p(t) = v p
0 + îp ⋅g t         (25) 

Complete Solution:    v p(t) =
−K vp

0 îp
1− (t − t0 )vp

0 + îp ⋅g t       (26) 

 
                                                
3  The ODE y' = y 2 has the solution:  y(x) = y0 / [(x-x0) y0+1]; see Ordinary Differential Equations, Wikipedia.org  
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7 Integration Scheme 
  

The DLP model equations are integrated with a 2nd order Runge-Kutta (RK2) method:  
 

Position:  x p
n+1 = x p

n +[v p ]
n+1/2Δtn       (27) 

 

Velocity:  v p
n+1 = v p

n +[Dp /mp + g]
n+1/2Δtn      (28) 

 

Energy:  ep
n+1 = ep

n +[QP /mp ]
n+1/2Δtn        (29) 

 

Mass:   mp
n+1 =mp

n −[ !sp ]
n+1/2Δtn       (30) 

 

Assume initial conditions at r0, t0 : 
 

   x p(t0 ) = ξ pust0 îp        (31) 
 

   v p(t0 ) = ξ pus îp        (32) 
 

then the numerical solution is given by integrating eqs. (6.1)-(6.3), assuming no particle burning. The 
accuracy of the integration scheme may be checked by computing the L2 Norms of the solution: 
 

   ex (t
n ) = x p

n − x p(t
n )
2

p
∑       (33) 

 

   ev(t
n ) = v p

n − v p(t
n )
2

p
∑       (34) 
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