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1 Introduction

The accurate control of the spatial resolution of scalars involved in the description of turbulent flame fronts
is at the core of many issues faced when simulating turbulent flames. This is specifically the case in large-
eddy simulation (LES) where only the largest flow scales are resolved. In zones where the mesh is coarse,
the bounded character of the scalar is not always preserved by the numerical scheme without adding some
amount of artificial diffusivity to make the signal thicker. In the artificially thickened flame approach [1],
the boost in diffusivity is designed to preserve major flame properties.

Modern high-order methods are grounded on high-order polynomial approximations of the scalar fields [2–
4]. Along these lines, using a modal decomposition of the chemical source for reactive scalars, a sensor
constructed from the modal decay rate of the polynomial approximation of the chemical source allows
for automatically locating flow zones where the mesh resolution is too coarse for the flame signal (i.e.
source terms) to be resolved. This sensor is easily related to a thickening factor (based on a boost in scalar
diffusivity) in order to calibrate, from a direct treatment of the scalar signals seen in the simulation, an
artificially thickened flame closure.

A similar treatment is applied to the components of the scalar gradients, to calibrate a sub-grid scale flame
wrinkling factor from the energy of the modes of the resolved scalar gradient. The method is first applied to
one-dimensional flames at various mesh resolutions and orders of discretisation. Then, a three-dimensional
canonical turbulent flow is simulated. Starting at a high level of resolution, the mesh is made coarser and
statistical results are compared to confirm the validity of the discussed strategy.

2 Numerics and control of chemical source resolution

Recently, several high-order methods have been proposed, including Spectral Difference [2–4] (SD) and
Flux Reconstruction [5–7] (FR) type schemes. The SD approach is retained in this study, using a flow
solver whose details may be found in [8].
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The quality of the resolution of a reactive scalar mainly depends on the quality of the resolution of its source
term. Within the SD context, the source term may be reconstructed from a modal decomposition:

ω̇Y (ξi, t) =
n∑
j=1

ω̇?Yj (t)Pj−1(ξ
i) , (1)

with ω̇?Yj (t) the j-th mode of the scalar source in the direction ξk and Pj−1(ξik), the Legendre polynomial
of order j − 1. Because the solution is advanced in time in the code using a nodal decomposition [8], the
modes of Eq. (1) are readily obtained from the available nodal values thanks to the inverse Vandermonde
matrix [9]. Thereafter a single direction is considered for simplifying the notation, the extension to three
dimensions by applying the relation (1) to ξi1, ξi2 and ξi3 is straightforward. Once the modes are known,
the method discussed by Persson and Peraire [10, 11], to control the resolution of a signal, is applied to
the chemical source. It is based on the idea that for a well resolved signal, the difference between two
polynomial approximations of order n − 1 and n stays small (for n sufficiently large), if not the case then
the signal is not properly resolved. The approximation of the solution without the last n-th mode would
read: ̂̇ωY (ξi, t) =

n−1∑
j=1

ω̇?Yj (t)Pj−1(ξ
i) . (2)

For well-resolved solutions, hence solutions which are seen as smooth by the mesh, the difference between
the two polynomial approximations:

∆ω̇Y (ξi, t) = ω̇Y (ξi, t)− ̂̇ωY (ξi, t) = ω̇?Yj (t)Pn−1(ξ
i) , (3)

which is equal to the contribution of the last mode (j = n = p+1), is expected to stay very small compared
to the sum of the contribution of the other modes (j = 1, · · · , p). A direct measure of the smoothness of the
signal within the element (cell) may thus be constructed by comparing the energy of the last mode within
the cell to the total energy of the modes:1

sω̇Y = log10

(
ω̇?2Yn∑n
i=1 ω̇

?2
Yi

)
. (4)

In practice sω̇Y is negative and it increases with the relative amplitude of the last mode. The threshold value
soω̇Y

above which the signal is considered as discontinuous, depends on the order of the method and on
the distribution used for the solution points (here Gauss-Legendre quadrature points). An auto-calibration
strategy of sensors was discussed recently [8]. This method is extended to chemical sources, to define
a scalar source-sensor threshold valid for any arbitrarily value of the order of the method. The sensor
threshold reads (see Fig. 1):

soω̇Y
= sMS

ω̇Y
− CE . (5)

The constantCE = 3 is a calibration parameter, which does not depend on the order of the numerical method
used, as shown thereafter in the one-dimensional flame test case.

Once a discontinuity has been sensed in the chemical source signal, an amount DAd
Y of additional diffusivity

is imposed locally within the element and a flame thickening factor F (x, t) = (DY +DAd
Y (x, t))/DY [1] is

1The values of the Legendre polynomials Pj−1 do not enter explicitly the definition of the sensor. Indeed, when the full signal is
considered in the analysis via (∆ω̇Y (ξi, t),∆ω̇Y (ξi, t))e/(ω̇Y (ξi, t), ω̇Y (ξi, t))e, the ratio of the standard inner products within
the element reduces to Eq. (4), because of the orthogonality of the Legendre basis.
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Figure 1: Response of sMS
ω̇Y

obtained from manufacture solution vs order of accuracy n = p+ 1.

defined to be applied to the scalar equation, where DY denotes the diffusivity of the scalar. This diffusivity
is calibrated as the additional viscosity discussed in [10]:

DAd
Y =


0 if sY < so

Y − κ
Do
Y

2

(
1 + sin

π(sY − so
Y )

2κ

)
if so

Y − κ ≤ sY ≤ so
Y + κ

Do
Y if sY > so

Y + κ ,

(6)

where κ = 1 determines the width of the transition between no additional diffusivity and its nominal level
Do
Y , which is expressed in the fully compressible solver as:

Do
Y = CD max(|u|+ c)× [h/(n− 1)] , (7)

where h is the element size and CD = 0.006 is a pre-multiplier coefficient. |u| is the velocity magnitude
and c is the speed of sound.
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(a) h = 898µm
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(b) h = 1795µm

Figure 2: Temperature distribution in a freely propagating premixed flame. Line: DNS (h = 15µm). Circle:
5th order. ×: 7th order. Square: 9th order

A similar approach is followed based on the modal decomposition of the scalar gradient ∇Y · ~ξj to define
a sensor s∇Y in order to calibrate the unresolved SGS wrinkling of a turbulent flame surface, via a SGS
wrinkling factor Ξ [12]. It is then assumed that when this sensor is above a given level, the resolved flame
wrinkling (seen from the dynamics of the resolved gradient) is large enough so that some unresolved flame
wrinkling must exist within the subgrid. Power laws have been reported in the literature to express Ξ [12,13],
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Figure 3: Chemical source in a freely propagating premixed flame. Simulation at the 5-th order. x: h =
15µm. Circle: 898µm. Square: 1795µm.

with a scaling for its maximum level derived from fractal analysis Ξmax ≈ (∆/δc)
β [14, 15], where ∆ is

here an estimation of the LES filter size, δc is a cut-off length scale and β a parameter to be adjusted. Based
on s∇Y the gradient sensor, Ξ is allowed to evolve dynamically in the simulation between unity and Ξmax:
Ξ(s∇Y (x, t)) = 1 + α(s∇Y (x, t)) (Ξmax − 1), with α(s∇Y (x, t)) = 0.5 (1 + tanh(s∇Y (x, t) + a)× b)
(a = 11.5 and b = 15.0). The source term and the diffusive budget are then amplified by Ξ to account for
SGS flame wrinkling. In an additional simulation it is also tempted to apply Ξ to the chemical source only.

Table 1: Response versus mesh resolution and order of accuracy of: δ the mean distance between the
solution points; SL the flame speed; ns the number of points within the flame profile and F o the global
thickening factor.

Element size Order δ SL ns F o

h n = p+ 1 h/p [µm] [cm · s−1] δTh/δ + 1 δTh/δ
o
Th

5 224 40.4 5 4.6
898µm 7 150 39.9 4 2.2

9 112 39.7 4 1.9
5 359 40.3 4 9.5

1795µm 7 299 40.5 4 4.5
9 224 41.9 4 2.9

3 Application to freely propagating laminar flame and three-dimensional turbulent flame

The temperature profiles in a freely propagating flame simulated with single-step chemistry are shown in
Fig. 2 for the three meshes of Table 1, plus a fully resolved flame. The method manages to thicken the
flame so that the signal is sufficiently resolved to propagate at the expected speed for all meshes and order
of accuracy. In Fig. 3, the chemical source normalised by its maximum value is plotted versus temperature,
thus in composition space. The refined and reference simulation (h = 15µm) is shown along with the
h = 898µm and the h = 1795µm solutions for the 5th order of accuracy. The method automatically
distributes the burning rate signal over 4 points according to the resolution. Notice that between these
points, the solution benefits from the fact that it is represented by a p = 4-th order polynomial approximation
(n = 5 = p+ 1).
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Figure 4: Three dimensional turbulence. •: δ = h/p = 150µm. Dot-dashed-line: δ = 299µm. Line with
no-symbol: Ξ = 1. Line with-symbols: Ξ by modal analysis. Triangle: β = 1. Star: Ξ on source term only
with β = 1 and δc = 0.8δoth.

Two planar turbulent flames propagating toward each other and interacting with isotropic turbulence is
now simulated. In the turbulent flow generated from Taylor Green Vortices [16], the enstrophy reaches its
maximum Emax, there the flame simulation starts with a level of turbulent kinetic energy k = 18.37m2 · s−2.
The ratio of characteristic velocity fluctuations to the laminar flame speed is k1/2/SL = 10, the turbulent
Reynolds number is ReT = k1/2`T /ν = 2174, the Karlovitz number is Ka = τc/τk = 11 and the
Damköhler number is Da = τc/τT = Re

1/2
T /Ka = 4.26, where the chemical time is based on the ratio

τc = δo
Th/SL = 0.49ms. The Kolmogorov time is τk = (1/2Emax)1/2 = 64µs, the eddy turn over time is

τT = k1/2/(4νEmax) = 2.1ms, the integral length scale is `T = 45δo
Th = 9mm and the expected smallest

length scales in the flow are of the order of ηk = 28µm. At start, the turbulent flame is thus expected to
evolve in the wrinkled flamelet regime. DNS is usually reached for a resolution of 2×ηk so here δDNS =
56µm [17], therefore the mesh with δ = h/p = 150µm = 2.68δDNS , already provides a quite good
resolution for both the flow and the flame (δTh = 200µm). In this reference simulation (δ = 150µm), the
modeling based on modal analysis leads to Ξ = 1 and DAdd ' 0.

Figure 4 shows the time evolution of the statistical mean of the temperature and its variance in the domain.
The solution on a coarser mesh (h = 299µm) is quite close to the refined one. In theory, a perfect modelling
should report the same statistical results whatever the mesh and this constitutes a quite stringent test of SGS
modeling. The growth rate of the volume of burnt gases produced by the turbulent flames is well captured
in Fig. 4. It is also seen that the determination of Ξ by the modal analysis improves the results compared to
using a fixed value.
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