
26th ICDERS July 30th–August 4th, 2017 Boston, MA, USA

Numerical Computation of Linear Stability of Detonations

Dmitry I. Kabanov
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Aslan R. Kasimov
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia and

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

1 Governing equations

Linear stability of detonation waves is analyzed in this work by means of numerical calculation of time-
dependent solutions of linearized Euler equations. No assumption of normal modes is used which helps
avoid solving singular systems of ordinary differential equations that arise in normal-mode analysis. Here
we present the method for the case of one-dimensional flow of an ideal chemically reacting gas undergoing
an irreversible reaction A→ B. The reaction progress is followed by a variable λ such that the mass fraction
of A is 1− λ and that of B is λ.

In a reference frame attached to the lead shock which is assumed to propagate from left to right with time-
dependent speed D, the governing equations are written as

ρt + (ρ (u−D))x = 0,

(ρu)t + (ρu(u−D) + p)x = 0,

(ρe)t + (ρ (u−D) e+ pu)x = 0,

(ρλ)t + (ρ (u−D)λ)x = ρr.

where ρ, u, p, e, r are density, flow velocity, pressure, total specific energy, and reaction rate, respectively.
The total specific energy is e = ei +u2/2 with ei = p/ρ (γ − 1)−Qλ denoting the internal specific energy
for a calorically perfect gas with γ being the ratio of specific heats and Q the chemical heat release.

The numerical solution of the governing equations in the shock-attached frame requires an evolution equa-
tion for D. We use the equation derived in [7] specialized to one dimension:

dM

dt
= s, (1)

with

s =
1

A0
(Rs −As) , A0 =

2

γ + 1
Mva

(
3 +

γpaρa

M2

)
,

Rs = Q(γ − 1)ρsrs, As = ρs(c
2
s − U2

s )ux|s,
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where M = −ρaD denotes the normal mass flux into the shock, v the specific volume, c the sound speed,
U the fluid velocity in the shock-attached frame, and subscripts “a” and “s” denote ahead-of-shock and
postshock quantities, respectively.

The following Rankine–Hugoniot conditions at x = 0 are used in the above expressions:

ps = −γ − 1

γ + 1
pa +

2va

γ + 1
M2, vs =

γ − 1

γ + 1
va +

2

γ + 1

γpa

M2
, Us = Mvs, λs = 0, ρs =

1

vs
. (2)

We introduce the vector of state variables z = (ρ, u, p, λ)T and linearize it as z(x, t) = z̄(x)+z′(x, t) along
with D(t) = D̄ + ψ′(t) = −ρa(M̄ + M ′(t)), with the bar denoting the steady-state values, and the prime
the sought-for perturbation amplitudes. The resultant linearized governing equations in vector form are:

z′t +A(z̄)z′x +B(z̄)z′ − dz̄

dx
ψ′ = 0, (3)

where

A(z̄) =


ū− D̄ ρ̄ 0 0

0 ū− D̄ 1
ρ̄ 0

0 γp̄ ū− D̄ 0
0 0 0 ū− D̄

 , B(z̄) =


dū
dx

dρ̄
dx 0 0

− 1
ρ̄2

dp̄
dx

dū
dx 0 0

C(ρ̄r̄ρ + r̄) dp̄
dx γ dūdx + Cρ̄r̄p Cρ̄r̄λ

−r̄ρ dλ̄
dx −r̄p −r̄λ

 ,

and C = −Q(γ − 1) with subscripts ρ, p, and λ denoting partial derivatives.

Linearization of the Rankine–Hugoniot conditions (2) and the shock-evolution equation (1) yields:

p′s =
4vaM̄

γ + 1
M ′, v′s = − 4γpa

(γ + 1) M̄3
M ′, U ′s = M̄v′s + v̄sM

′, ρ′s = − v
′
s

v̄2
s
, λ′s = 0, (4)

dM ′

dt
= s′, (5)

where

s′ =
1

Ā0
(R′s −A′s)−

A′0
Ā2

0

(R̄s − Ās),

A′0 =
2

γ + 1

3vaM̄
2 − γpa

M̄2
M ′, R′s = Q(γ − 1)

[
(ρ̄sr̄ρ + r̄s) ρ

′
s + ρ̄sr̄pp

′
s
]
,

A′s = ρs
dū

dx

∣∣∣∣
s

[
γ
(
p̄sv
′
s + v̄sp

′
s
)
− 2ŪsU

′
s
]

+
(
c̄2

s − Ū2
s
) dū
dx

∣∣∣∣
s
ρ′s + ρ̄s

(
c̄2

s − Ū2
s
)
u′x|s.

The base steady-state solution is the ZND solution given by [7]:

v̄ =
γ

γ + 1

P

M2
(1− δ), p̄ = P −M2v̄, Ū = Mv̄,

where

δ =

√
1− hM2

P 2

(
H +Qλ̄

)
, h =

2(γ2 − 1)

γ2
,
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and P = pa + ρaD
2, H = ea + pa/ρa +D2/2.

Now Ū , p̄, and v̄ are defined in terms of λ̄ and D. To obtain the spatial structure, the rate equation for λ̄ is
integrated starting at the shock with the initial condition λ̄s = 0.

For self-sustained detonations, D = DCJ, where

DCJ =
√
c2

a + q +
√
q, q =

(γ2 − 1)Q

2
, c2

a =
γpa

ρa
.

The preexponential factor k is defined such that the half-reaction length is unity:

k =

∫ 1/2

0

Ū(
1− λ̄

)
exp

(
−Eact

p̄v̄

) dλ̄.

2 The numerical algorithm and results

To determine the stability properties of detonation for any particular set of parameters Q and Eact, we
integrate (3) numerically. Each simulation result depends on the following numerical parameters: resolution
per half-reaction zone N1/2, closeness of λ to unity at the end of the reaction zone τλ, and the amplitude of
initial perturbation a0. OnceN1/2 and τλ are specified, we compute the practical reaction zone length L, for
which 0 ≤ λ ≤ 1− τλ rounded to the least succeeding integer, and discretize the domain using N = N1/2L
grid points with coordinates xi, i = 0, . . . , N , such that x0 = −L and xN = 0 are left and right boundary
points, respectively. After this initialization step, simulation proceeds with the following steps: computation
of ZND quantities, solution of the linearized system, and postprocessing.

Once the ZND quantities that enter the matrices A and B are found, we calculate the unsteady solution of
the linearized system (3). The method of lines is used: on each time step we approximate spatial derivatives
on the numerical grid thereby converting the system of PDEs to a system of ODEs and then evolving the
latter in time:

dz′

dt
= −L̂(z̄, z′, z′x), (6)

where L̂(z̄, z′, z′x) is an approximation of L(z̄, z′, z′x) = A(z̄)z′x + B(z̄)z′ − dz̄
dxψ

′ from (3). We compute
left- and right-biased approximations of the spatial derivatives z′x based on the upwind method of the fifth
order. Then L̂ is found using the global Lax–Friedrichs flux:

L̂(z̄, z′, z′x) = L(z̄, z′,
z′−x + z′+x

2
)− αz

′+
x − z′−x

2
,

where z′−x and z′+x are left- and right-biased approximations of z′x, correspondingly, α is the largest eigen-
value of A over the numerical grid:

α = max
i=0,...,N+1

{ū− c̄, ū, ū+ c̄}|x=xi .

Once L̂ is evaluated over the full grid, system (6) is evolved in time using the adaptive-step time integrator
DOPRI5 [1], which is based on explicit Runge–Kutta method. We set both absolute and relative tolerances
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of the integrator to 10−14. Simulation proceeds to the final time Tf , where typically Tf = 10 is used. While
computing the solution, we record the time series of the perturbation of detonation velocity ψ′(t) at uniform
time intervals ∆t = 0.005. When simulation reaches Tf , the solver computes the ratio of L2-norms of the
time series for Tf/2 ≤ t ≤ Tf and 0 ≤ t ≤ Tf/2, and if this ratio is smaller than three, then Tf is increased
to 100. The resulting time series of the detonation velocity allows us to extract growth rates and frequencies
of perturbation by postprocessing.

At the beginning of each stage of the Runge–Kutta method, boundary conditions at the shock are specified
using (4). Computation of approximations of z′x near the boundaries of the computational domain is done as
follows. Near the downstream boundary, we employ three ghost points and zero-order extrapolation, while
near the upstream boundary (the shock) we use biased approximations of all the spatial derivatives, both
in (3) and in (5), similar to that done in [2]. Initial condition for perturbation is specified by setting the
perturbation of the detonation velocity ψ′ to 10−10 and flow variables z′ to a multiple of the ZND solution
such that ψ′ and z′ at the shock are consistent.

In the postprocessing step, the stability spectrum is extracted from the recorded time series ψ′(t). The
postprocessing algorithm is based on the Dynamic Mode Decomposition [4], which is a modern approach
to extract low-dimensional dynamics based on exponentially growing and decaying oscillating modes from
time series arising in numerical and experimental studies of fluid systems and in other fields as well.

To verify our approach, we compare the obtained instability spectra with the results known from the liter-
ature on normal-mode analysis of the same model [3, 5]. Table 1 shows the obtained results. These results
demonstrate that the agreement of the spectra is at least to two significant digits. Besides growth rates and
frequencies of modes, their relative errors are provided in this table computed by conducting simulations
with two different grid resolutions and considering the results obtained with a finer resolution to be “true”
results. Also, we were able to find a lower branch of the fundamental mode that was missing in [3], and later
found in [5, 6]. For an example of the time series of the perturbation of detonation velocity, we consider
detonation with γ = 1.2, Q = 50, and Eact = 26. This case was considered in [2] where one unstable
mode α = 0.03709980167992 + i 0.52214295442142 was found by a least-squares fit of the time series of
detonation velocity for early time of instability development in nonlinear simulations. Figure 1 shows an
example of the time series of the perturbation of the detonation velocity that we obtain for this case from
the unsteady linear computations with numerical parameters N1/2 = 40, τλ = 10−6. Postprocessing of this
time series gives one unstable mode α = 0.03709 + i 0.52215 with the relative error of the fit 1.06× 10−5.
We see that four digits after decimal point are in agreement between the results obtained via the present
approach and reported in [2]. Both Table 1 and the result described in this paragraph verify our approach
and correctness of its implementation.

We also compute neutral stability curves for γ ∈ {1.2, 1.3, 1.4} using the present approach. Figure 2
displays the comparison between our computed results and those of [3, Figure 7] for the CJ case with
γ = 1.2. A satisfactory agreement is seen. In Figure 3 we show the neutral boundary in Q–E plane (a) and
the frequency of oscillation along the neutral boundary (b) for various γ. The smaller values of γ are seen
to extend the range of unstable E to smaller E when Q ' 4 and to reduce the unstable range towards larger
values of E atQ / 4. At the same time, the frequency of neutral oscillation is seen to decrease substantially
with decreasing γ at large Q while it is essentially independent of γ at small values of Q.

In computing the neutral stability curves, we generate 256 logspaced values of Q in the range 10−0.35–102.
For eachQ we run simulations varyingEact according to an algorithm similar to the binary search algorithm
until some particular value of Eact gives absolute value of the growth rate smaller than 10−4. For each Q
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Table 1: Comparison of the stability spectra between the present work and the normal-mode results for
γ = 1.2 and Q = 50. Sources for the normal-mode results: ∗ [5, p. 2617]; ∗∗ [3, p. 127]. Description of
columns: i is the mode number, αre growth rate, αim frequency, ere relative error of growth rate, eim relative
error of frequency. Eigenvalues α are in the scales used in the present work.

Present work Normal-mode analysis

Eact i αre ere αim eim αre αim

25.26∗ 0 −0.000 17 1× 10−4 0.530 48 6× 10−8 0.000 0.530

50.00∗∗

0.0 0.093 65 3× 10−7 0.000 00 2× 10−16 N/A N/A
0.1 1.744 58 2× 10−11 0.000 00 2× 10−16 1.743 0.000
1 1.765 36 6× 10−11 4.108 17 1× 10−12 1.764 4.104
2 1.773 99 6× 10−12 7.830 05 2× 10−11 1.772 7.823
3 1.677 45 1× 10−9 11.421 06 1× 10−10 1.676 11.42
4 1.535 41 1× 10−8 14.993 13 4× 10−10 1.534 14.98
5 1.347 88 4× 10−8 18.550 77 6× 10−10 1.346 18.53
6 1.140 96 1× 10−7 22.105 24 7× 10−10 1.140 22.09
7 0.914 68 5× 10−7 25.658 54 2× 10−10 0.913 25.64
8 0.677 88 1× 10−6 29.211 39 2× 10−9 0.677 29.19
9 0.430 92 4× 10−6 32.764 03 5× 10−9 0.431 32.73

10 0.177 64 2× 10−5 36.316 92 1× 10−8 0.177 36.28

the initial search range for critical Eact is [10; 140]. Other parameters are N1/2 = 40 points and Tf = 10.
Computation of each neutral stability curve took about 7 hours on 16-core machine. At the same time, for a
typical single simulation not too far away from the neutral stability boundary and, say, numerical parameters
N1/2 = 20 and Tf = 100, time to solution is on the order of one minute.
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Figure 1: Time series of the normalized detonation
velocity for the detonation with parameters γ = 1.2,
Q = 50, and Eact = 26.
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Figure 2: The neutral stability curve computed with
the present method and its comparison with the
normal-mode result of Lee & Stewart [3, Figure 7].

Although we obtained some excellent results with the postprocessing algorithm based on DMD, we point
out that making the algorithm robust is quite challenging in view of many control parameters that need
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Figure 3: (a) The neutral stability curve at various γ and (b) frequency of oscillation αim along the neutral
stability curves.

to be tuned to obtain the solution to desired accuracy. For example, the algorithm sometimes finds false
eigenmodes, which, particularly, led to the situation where the algorithm of finding critical values of Eact
did not converge at one point for the neutral stability curve for γ = 1.2 shown on Figure 3.

In the ongoing work, we extend the present algorithm to more general situations that include the effects of
multireaction kinetic mechanisms, presence of losses and two-dimensional effects. We intend to report on
them in the near future.

This work was partially supported by the King Abdullah University of Science and Technology.
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