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1 Abstract 

We have made reasonable predictions of the cookoff response of large-scale systems containing plastic 

bonded explosives (PBXs) and a melt-castable explosive using kinetics determined from small-scale 

experiments. The key to scaling is to include relevant physics for the systems of interest. In the current work, 

we discuss cookoff of PBX 9502, PBX 9501, LX-14, and Comp-B.  PBX 9502 is composed of 95 wt% 

triaminotrinitrobenzene (TATB) and 5 wt% chlorotrifluoroethylene/vinylidine fluoride (Kel-F). PBX 9501 

is composed of 95 wt% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2.5 wt% Estane® 5703 

(a polyurethane thermoplastic), and 2.5 wt% of a nitroplasticizer (NP): BDNPAF, a 50/50 wt% eutectic 

mixture of bis(2,2-diniropropyl)-acetal (BDNPA) and bis(2,2-dinitropropyl)-formal (BDNPF). LX-14 is 

composed of 95.5 wt% HMX and 4.5 wt% Estane® 5702-F1. Comp-B is nominally composed of 63 wt% 

hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 36 wt% 2-methyl-1,3,5-trinitrobenzene (TNT), and 1 wt% 

wax. Figure 1 shows various stages of damage for each of these explosives in Sandia’s Instrumented 

Thermal Ignition (SITI) half-shell configuration [1].  

 

Figure 1. Images of PBX 9502, PBX 9501, LX-14, and Comp-B showing various stages of damage. 
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2 Observations Guide Simplified Physics  

Our decomposition model for each of these explosives has been simplified by using pressure dependent 

reaction rates, which are a simple way to account for significant gas phase reactions, without knowing the 

specific details of the reaction mechanism. The pressure dependency was determined by performing small 

scale experiments that were either vented or sealed. Some of these experiments were performed using 

molding powders, such as shown in Fig. 1.C for LX-14, to prevent the decomposition gases from being 

trapped within the explosive. Other experiments were performed with fully pressed explosives. We also 

performed several experiments with different free gas volume sometimes referred to as ullage. Furthermore, 

we used a borescope in some experiments to visually observe the explosive as it decomposed in situ. 

Understanding the role of the binder in our PBX formulations, such as propensity for damage and reactivity, 

was necessary to predict cookoff response in large-scale systems. Factors to consider include retention of 
gas within the explosive, damage of the explosive, gas release into the ullage, and gas leakage from the 

confining vessel. Knowing the working pressure of the large-scale systems was needed to accurately predict 

ignition times for these pressure sensitive explosives.  The pressure was assumed to be ambient when the 

confining vessel ruptured or leaked. In the current work, our thermal-chemical models did not consider 

mechanical failure of the explosive or confining vessel. In general, our predictions bound the experimental 

response by assuming the explosive was either intact (e.g. fully pressed) or fully damaged (e.g. powders). 

Damage in the melt-castable explosive, Comp-B, was different than in the plastic-bonded explosives. In 

Comp-B, the TNT component melts, leaving a suspension of RDX particles that partially dissolves in the 

hot liquid TNT. At low pressures, decomposition gases accumulate in bubbles and enhance mixing and heat 

transfer. At higher pressures, bubble formation is suppressed as observed in our borescope images. We 

found that our predications of sealed small scale experiments matched the data better when we assumed that 

flow was inhibited by the suspension and lack of significant bubbles. However, in vented systems, flow was 

observed, primarily induced by bubble formation.  

The remainder of this abstract describes predictions and data comparisons for PBX 9502 [2], PBX 9501 [3], 

and Comp-B [4]. Details regarding the various models and parameters can be found in the references. 

3 PBX 9502  

We found that the decomposition gases in PBX 9502 were initially retained within the explosive. As the 

internal pressure increased, material would crack and spall on the surface and release some of the trapped 

decomposition gases as shown in Fig. 1.A. This release was accompanied by an audible popping sound. 

Prior to the gas release, internally measured temperatures would increase, and then decrease as the material 

spalled and the internal pressure was released. Eventually, these explosives thermally ignited. 

Our simple PBX 9502 model [2] only solves the conductive energy equation with a source term for the 

reaction energy using the simple four step mechanism shown in Fig. 2.A. The model does not solve for 

mechanical damage, which is needed to predict the initial temperature excursion measured in our SITI 

experiment which confines a 2.54-cm diameter by 2.54-cm tall cylinder of PBX 9502 as shown in Fig. 2.B. 

for one our large ullage configurations. However, the uncertainty in our model predictions using Latin 

Hypercube Sampling (LHS) was sufficient to bound the temperature response in the experiment as shown 

in Fig. 2.C. The predicted internal pressures of the gases trapped within the interior of the explosive are 

higher in Fig. 2.C. than the measured pressure on the exterior of the explosive.  This model was applied by 

Aviles-Ramos et al. [2, 5] to successfully simulate the thermal response of systems containing 2 to 1312 g 

of PBX 9502, which is a two order of magnitude increase in sample size. 
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Figure 2. PBX 9502 A) simplified mechanism, B) SITI configuration, and C) run #277 results [2]. 

4 PBX 9501  

Initially, we thought that the same framework used for cookoff of PBX 9502 could be used for PBX 9501 

since our sealed and vented SITI experiments showed similar trends. However, we observed a reactant 

limited exothermic reaction, which we attributed to decomposition of the nitroplasticizer in our vented low 

density SITI experiments. We assumed that the 2.5 wt% nitroplasticizer (NP) in PBX 9501 reacted 

exothermically causing a temperature excursion in our thermocouple measurements. In our vented 

experiments, this temperature excursion did not continue into ignition since the amount of NP was small. 

However, in our sealed low density experiments, the rate of energy release associated with the NP reaction 

was faster and resulted in cookoff. The faster rates were assumed to be caused by a significant gas phase 

reaction, which was modeled as a pressure dependent reaction.  

In some of our high density SITI runs such as shown in Fig. 1.B, we observed migration of the NP to the 

outer edge of our experiments, wherein the energy release associated with the NP was quickly dissipated 

via the conductive aluminum confinement. For these cases, the thermal excursion was not clear. We suspect 

that the low porosity associated with significantly different expansion properties for our binder and 

explosive caused migration of the binder in our high-density experiments. 

Figure 3.A and 3.B shows our simple mechanism for PBX 9501 as well as measured and predicted 

temperatures for our low density SITI run #414. Using this mechanism, we successfully simulated various 

systems from five other laboratories covering three orders of magnitude in PBX 9501 mass (e.g. 2 g to 2.5 

Kg). Figure 3.C shows a comparison of three of these experiments performed at other laboratories. Success 
is partially attributed to ensuring the pressure dependent reactions are modified when the working pressure 

of the vessel is exceeded. This is done by changing the pressure exponent to zero when the vessel working 

pressure is exceeded and the gases vent. Also, for systems wherein the explosive mass is small and the 

density high such as the One-Dimensional Time-to-explosive (ODTX) experiments [6], the NP reaction is 

suppressed to account for the migration of the nitroplasticizer to the explosive edge with the NP reaction 

enthalpy dissipated through the aluminum confinement. The ODTX simulations were also limited to the 

working pressure of the experiment (152 MPa). 
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Figure 3. PBX 9501 A) mechanism and B) composition. Experiment and model comparison of C) SITI 

temperatures [3], D) ODTX ignition times [6], E) NAWC pipe temperatures [7], and F) LANL LASC 

temperatures [8]. 

5 LX-14  

The composition of LX-14 (95.5 wt% HMX and 4.5 wt% Estane®) is similar to PBX 9501 (95 wt% HMX, 

2.5 wt% Estane, and 2.5 wt% NP). The binder in LX-14 does not contain an energetic plasticizer. We 

thought that the LX-14 would be less sensitive than PBX 9501 since LX-14 essentially replaces the NP with 

Estane®. Our preliminary experiments indicate that LX-14 is in fact, more sensitive than PBX 9501 as shown 

in Fig. 4, which depicts SITI center plane temperature data for both LX-14 and PBX 9501. These 

experiments were performed with low density LX-14 molding prills as depicted in Fig. 1.C and low density 

PBX 9501 molding prills. We believe the Estane in LX-14 retains the gases within the prills and the pressure 

dependent reactions are accelerated. In contrast, the gases are not contained as well in PBX 9501 and are 

relatively slower. More research is needed to determine the pressure effects in LX-14.  
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Figure 4. Measured center plane temperatures in A) sealed and B) vented SITI configuration with LX-14 

and PBX 9501. 

 

 

Figure 5. Box experiment A) schematic, predicted temperature contours near ignition with B) flow and 

C) without flow, and D) comparison between predicted and measured temperatures. In B and C, red and 

blue represent hot and cold, respectively. The thermocouple locations in D are in the center of the heater 

and 2.5 cm above the heater. 

5 Comp-B  

Clearly the explosive binder interaction in LX-14 and PBX 9501 are more complex than our initial thoughts. 

Melt-castable explosives such as Comp-B are even more complex. Previously, we have simulated Cookoff 

of Comp-B by solving the energy equation with a source term for reactions coupled to the momentum 

equation with a Boussinesq approximation. This model with flow captured ignition time adequately for our 

SITI experiments, but did not scale to larger experiments such as shown in Fig. 5. For the simulations with 

flow, we incorporated the viscosity model of Zerkle et al. [9]. This model did not capture the details of the 

experiment as well as the same model without flow. We believe that the RDX suspension hinders the natural 

convective flow, which might be modeled more effectively with a viscosity that has a yield stress. More 

work is needed to properly scale cookoff predictions of melt-castable explosives. 
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6 Conclusions  

We have shown in the current work that it is possible to take small-scale experiments, create models, and 

apply the models to larger systems of practical interest. The key to scaling is recognizing and accounting 

for relevant physics that may not be significant in the small-scale experiments. For example, we found that 

pressurization increases our reaction rates and needs to be considered. Also, accounting for reactive binder 

components such as the NP in PBX 9501 was necessary to predict some systems. Also, accounting for flow 

when needed for melt castable explosives. We believe more work is required to properly scale cookoff 

predictions of melt castable explosives. 
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