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1 Introduction

Effective heat recirculation mechanisms inherent to combustion processes in porous media result in
several features relative to a free-burning flame. These features include higher burning velocities, supera-
diabatic temperature in the reaction zone [1], extension of the flammability limits [2], low emission of
pollutants [3] and the ability to burn fuels with a low energy content. These features have found practical
use in a number of applications [4] which in turn stimulated further fundamental investigations of filtrational
gas combustion in inert porous media and microchannels systems [5]. Whereas a large number of theoret-
ical and numerical studies are dedicated to the combustion processes in the interior of porous media, the
flame behavior in the vicinity of porous media / open space interface is less investigated. Particularly, many
aspects concerning flame dynamics in the course of combustion wave penetration in porous media were
not considered in details. At the same time, flame stabilization near the porous body boundary is typical for
many practical burners. Fundamental investigations of flame penetration inside the porous media meet some
difficulties associated with opacity of most materials that prevents visual observations and uncontrolled ir-
regularity on the pore scales which hampers deducing of general regularities. Some similarity between
filtrational gas combustion and flame propagating in the narrow channels [6] suggests that investigations of
idealized system consists of the set of microchannels may provide relevant knowledge on flame behavior
near the boundaries of porous media. In such microchannels system it is possible to exclude probabilistic
factors associated with porous media irregularity and investigate only effects of heat and mass transfer on
flame behavior.

This paper presents the results of experimental and numerical study of flame penetration in the set of
planar quartz ducts with non-uniform channel sizes. Such configuration allow us to observe flame dynamics
and control spatial distribution of channels sizes by variation of the gaps between the quartz plates forming
ducts. The regions of existence of different combustion regimes in equivalence ratio / mixture flow rate
plane were obtained for the channels of different transverse sizes. Besides the fundamental knowledges on
flame behavior in the vicinity of interface between microchannels array and free space, presented results
can qualitatively describe the main features of combustion wave penetration inside the porous media.
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2 Experimental setup

Photograph of the multi-channel burner is shown in Fig. 1. The quartz plates of 6 cm width, 12 cm
height and 0.1 cm thickness form the channels walls. The gap between the plates can be varied from 0.1 cm
to 1 cm. The total number of the channels in the system depends on their transverse size and ranges from 1
to 20. Methane-air mixture is supplied to the channels through the rectangular slot which size fits the total
size of the multi-channel system. Three-layer fine steel mesh is embedded to the slot in order to provide near
flat flow velocity profile. The control system consists of a PC, mass flow controllers and AD/DA converters.
The mixture is ignited at the outlet of the channels by pilot flame which is removed immediately after flame
initiation. The flame behavior is recorded with two photo cameras which are mounted perpendicular and
parallel to the quartz plates forming the channels.

Three different configurations of the multi-channel burner differing in inner size of the channels were
studied experimentally. The first and second configurations consist of seven equally sized channels of
transverse distances 0.3 and 0.1 cm respectively. Below we will refer these configurations as I and II. In
the third configuration which will be denoted as III, the channels of inner size 0.1 and 0.3 cm alternate. In
this case, the transverse size of outside channels is 0.3 cm and the total number of channels is 7. Flame
behavior was investigated in the range of equivalence ratios from 0.7 to 1.3. Notice that for stoichiometric
methane-air mixture quenching distance is about 0.22 cm and it is about 0.3 cm for equivalence ratios 0.8
and 1.2.

Fig.1. Photograph of the multi-channel burner.

Fig.2. Temperature distributions for differ-
ent combustion modes in configuration III
calculated forQ = 285 cm3/s (a),Q = 125
cm3/s (b) and Q = 95 cm3/s (c).
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3 Mathematical model

Premixed flame penetration in the multi-channel burner was studied numerically in the frame of thermal-
diffusion model with prescribed time-independent velocity flow field. The set of unsteady two-dimensional
equations for gas temperature, temperature of the walls and fuel concentration can be written in the follow-
ing non-dimensional form:

∂T/∂t+ (V∇)T = ∆T + (1− σ)W − hr(T 4 − σ4) (1)

∂Θ/∂t = κ∆Θ (2)

∂C/∂t+ (V∇)C = Le−1∆C −W (3)

Where W = ((1 − σ)N)2/(2Le)C exp(N(1 − 1/T )) is the chemical reaction rate and V = (Vx, Vy) is
the dimensionless time-independent velocity vector pre-calculated for the non-reactive mixture in examined
channels configuration; T and Θ is the non-dimensional gas and wall temperature in units of Tb, the adia-
batic temperature of combustion products; C is the non-dimensional concentration of the deficient reactant
in units of C0, its value in the fresh mixture; x, y is non-dimensional spatial coordinates in units of flame
thermal thickness lth = Dth/Ub, where Dth is the mixture thermal diffusivity and Ub is the laminar burn-
ing velocity; t is non-dimensional time in units tth = Dth/U

2
b ; σ = T0/Tb where T0 is the fresh mixture

temperature; Le is the Lewis number; N = Ta/Tb is the scaled activation energy and Ta is the activation
temperature; hr is the non-dimensional radiative heat loss intensity; κ = Ds/Dth, where Ds is thermal
diffusivity of the channels wall.

Equations (1)-(3) are supplemented by boundary conditions at the inlet (T = Θ = σ, C = 1) and
outlet (∂T/∂y = ∂Θ/∂y = ∂C/∂y = 0). At the interface between gas and solid phase the Newton’s heat
exchange boundary conditions are applied. Radiation heat losses are considered only from the outlet faces
of the channels walls. Computation domain includes two channels of same or different transverse sizes as
shown in Fig. 2. Herewith, periodic boundary conditions in x direction are used.

Equations (1)-(3) with boundary conditions were solved numerically by finite-difference explicit scheme.
Velocity field was pre-calculated by SIMPLE algorithm for non-reactive flow. Problem parameters were
chosen as N = 7.5, σ = 0.15, Le = 0.9 that roughly corresponds to the methane-air mixture with φ = 0.8.
Investigations of Lewis number effect, effects of boundary conditions and others will be matter of further
study. Here we restrict ourself by numerical simulations with parameters roughly correspond to experimen-
tal conditions. Convergence of the numerical scheme was checked by the simulations on a set of gradually
refining grids.

4 Results and discussion

Experiments show that depending on channels configuration, equivalence ratio and mixture flow rate the
different flame behaviors are observed. Regime diagram in Fig. 3a demonstrates the regions of existence
of different combustion regimes in equivalence ratio (φ) / mixture flow rate (Q) plane obtained for the
examined configurations of the multi-channel burner. At high flow rates the flames are stabilized at the
channels outlets and their shape is almost independent on z-coordinate (see Fig. 1). In xy-plane the flames
have concave shape with the tip located at the central axis of the corresponding channel and directed in
the flow direction. The bottom parts of the flames are attached to the top rims of the plates forming the
channel. Such flame topology is typical for the burner stabilized flames. In Fig. 3a this combustion regime
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Fig.3. Experimental (a) and numerical (b) regime diagrams.

is marked by green triangles. With the decrease of mixture flow rate the flames height is also decreased. For
relatively wide channels of 0.3 cm size (configuration I) the range of inlet velocities for which the flames can
penetrate inside the multi-channel burner exists. Herewith, for lean mixtures with φ = 0.7 the flames are
quenched at a certain depth from the top of the burner (red circles in Fig. 3a), while for φ = 0.8, 1.1− 1.3
after the penetration stage the upstream flame propagation is observed (blue diamonds in Fig. 3a). At
relatively small flow rates the upstream flame propagation becomes unstable. The instability manifests
itself in flame repetitive extinction and re-ignition. The flame propagation in this case is accompanied with
noticeable sound. Such flame behavior is associated with the temperature gradient in the channels walls and
have the same nature as FREI (flame repetitive extinction and ignition) regime previously observed in the
experiments on combustion in externally heated narrow tube [7]. Despite of flames pulsations the average
position of combustion wave shifts upstream with almost constant velocity. It was experimentally found
that for upstream propagating combustion waves the average flame speed ranges from 0.05 to 0.3 mm/s and
its dependence on inlet mixture velocity shows U-shape form. Such behavior is typical for the low velocity
regime of filtrational combustion waves [1, 6]. For near-stoichiometric methane-air flames (φ = 0.9, 1.0) in
channels configuration I the only two combustion regimes are observed, namely burner stabilized flames at
high mixture flow rates and flashback (yellow stars in Fig. 3a) at relatively low inlet velocities.

Regime diagrams obtained for the set of equally sized narrow channels of transverse size 0.1 cm
(configuration II) significantly differ from those for configuration I. For the mixtures far from stoichiometric
(φ = 0.7, 1.2, 1.3) the flame penetration inside the channels becomes impossible and only burner stabilized
flames are observed over whole range of mass flow rates. It can be assumed that it is due to the increasing of
surface-to-volume ratio resulting in intensification of external heat losses. In the range of equivalence ratios
from 0.8 to 1.1 and moderate mixture flow rates the flames settle inside the channels at certain distances
from their outlet. Although the FREI phenomenon is observed under some conditions, the average positions
of flames inside the channels remains constant. In regime diagram (Fig. 3a) this combustion mode is marked
by rectangles. Typical front and side views of the multi-channels burner operating in this regime are shown
in Fig. 4. In yz-plane (see Fig. 1) flames in the channels have shape of cup whose edges are attached to the
top rim of the channels walls. The distance between the channels outlet and the deepest point of the flame
is maximal in the central channel and minimal in the side channels. Such flames shape is a result of heat
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Fig.4. Front and side views of the flames stabilized inside the channels at φ=1, Q=202.5 cm3/s.

losses to the ambient. Experiments show that flame curvature depends on equivalence ratio and mass flow
rate. The higher inlet mixture velocity, the deeper flames submergence in the channels. This is quite in line
with basic combustion theory concepts asserting direct dependency of burning velocity on flame surface
area. Possibility of flame stabilization in the wide range of problem parameters such as inlet velocity and
equivalence ratio is associated with effects of external heat losses and variation of flames surface area.

In contrast to configuration II, for configuration III which consists of alternating wide and narrow
channels the stable upstream flames propagation becomes possible. At relatively high inlet velocities the
combustion waves propagates in both wide and narrow channels (blue diamonds in Fig. 3a), while for
moderate mixture flow rates and φ = 0.7 − 0.9 the flames in narrow channels are quenched and reaction
waves are observed in wide channels only (half-shaded diamonds in Fig. 3a). It should be noted, that at high
flow rates the flame propagation in wide channels is almost uniform while in narrow ducts repetitive flame
extinction and re-ignition accompanied by popping sound takes place. Experimental results suggest that
heat exchange between wide and narrow channels determines flame dynamics in these combustion regimes.
At high flow rates the flame propagation velocity is lower that results in more effective heating of the narrow
channels by the flames in neighboring wide channels and provides the possibility of flame re-ignition and
propagation in narrow ducts. At low mixture flow rates or equivalence ratios far from stoichiometric such
heating becomes insufficient to maintain combustion in narrow channels. Interestingly, that the range of inlet
velocity for which the upstream flames propagation is observed is much wider for the fuel rich mixtures. It
may be due to supporting influence of afterburning in diffusion flame which is stabilized at the burner outlet.

Experimental observations of flame dynamics in the course of combustion wave penetration in the multi-
channels burner show that flames enter in the narrow channels first. After some transition period necessary
to heat channel walls the flames start to penetrate in wide channels too. Such behavior can be explained by
the results of numerical simulations of non-reactive flow in multi-channels geometry which predict lower
mixture velocity at the outlet of narrow channels compared with velocity at the exit of wide channels.

Numerical simulations were performed for equally sized channels of size 0.3 and 0.1 cm as well as for
alternating channels with transverse sizes 0.3 and 0.1 cm. These conditions correspond to experimental
configurations I-III. Numerically obtained regime diagram for φ = 0.8 is shown in Fig. 3b. As it is seen
from Fig. 3 the computational results are in a good qualitative agreement with experimental data. For
configurations I and III burner stabilized flames are observed at high inlet velocities. With decrease of
inlet velocity the upstream flame propagation take place. Temperature distributions typical for different
combustion modes in configuration III are shown in Fig. 2. For configuration II numerical simulations
predict the existence of burner stabilized flames only while in experiments the flame stabilization inside
the channels is also possible (rectangles in Fig. 3a). This may be explained by the effect of external heat
losses from the side surfaces of the burner which play an important role in formation of non-planar flame
topology and hence in flame stabilization but is omitted in numerical simulations. Results of numerical
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simulations and their comparison with experimental data suggest that regions of existence of submerged
stabilized flames (rectangles in Fig. 3) may largely depends on burner’s linear dimensions and conditions of
heat exchange with ambient.

5 Conclusions

Experimental investigations of flame penetration inside the multi-channel burners consist of equally
sized narrow channels as well as of channels with different inner sizes demonstrate a big variety of combus-
tion regimes including burner stabilized flames, upstream propagating flames and flames stabilized under
the burner external surface. The regions of existence of different combustion regimes in equivalence ratio
/ mixture flow rate plate were experimentally found for different channels configurations. The effect of
channels sizes and their mutual arrangement on flame behavior and combustion regimes were studied. It
was demonstrated that at qualitative level the flames behavior in multi-channel system can be described in
the frame of reduced thermal-diffusion model with prescribed flow field.

In wide range of parameters such as equivalence ratio, mixture flow rate and channels transverse size the
flame pulsations having the same nature and characteristic features as FREI phenomenon [7] were observed.
These pulsations are accompanied with noticeable sound and probably allow to explain the nature of noise
frequently appearing in filtrational gas combustion. Information on topology and behavior of the flames
stabilized inside the channels near their outlet may be useful for understanding of fundamental mechanisms
of flame stabilization in the vicinity of external surface of porous burners.
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