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1. Research Overview 
Transient, spatially resolved thermal energy deposition into inert and reactive gas 
volumes is the source of thermodynamic and mechanical disturbances. Thermo-
mechanical concepts and modeling, Kassoy [1-4], have been used to develop a quantified 
cause-effect relationship. When the energy deposition is “sufficiently” small the 
disturbances are described by classical acoustic wave equations  (examples include 
among many, Chu [5], Rott [6], Liewen [7] and their cited references). In contrast the 
mathematical models used to describe thermo-mechanical physics incorporate a much 
wider range of energy deposition. Examples of these phenomena include shocks 
generated by lightning and explosions, detonation initiation, internal combustion engine 
knock, blast waves associated with supernovae, transient pressure variations in liquid 
propellant rocket engines and perhaps, coronal mass ejections from the Sun. 
 
Formal mathematical methods are employed to quantify the thermo-mechanical response 
of gases in; 

A. an unconstrained gaseous micro-volume embedded in a larger unheated 
environment, and 

B. a fixed macro-volume of gas heated throughout. 
 

The analyses are used to characterize the physical phenomena occurring within both 
volumes, as well as the consequences of processes internal to the micro-volume on the  
unheated environment.  The non-dimensional compressible Euler equations, including a 
heat source term in the energy equation, are used to identify the relevant non-dimensional 
parameters.  They include; 
 

A. the energy parameter α, and 
B. the time-scale parameter ε. 

 
The parameter α measures the amount of energy added during a defined energy 
deposition time-scale relative to the initial internal energy in the volume of interest.  The 
time scale parameter is the ratio of the energy deposition time-scale to the acoustic time-
scale of the volume. Results are given for the following combinations of the parameters; 
 

A. α << O(1), ε = O(1), 
B. α = O(1),   ε = O(1), 
C. α >>O(1),  ε = O(1), 
D. α >>O(1,   ε <<O(1), 
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Physically, cases A and B describe «weak» and «modest» energy addition, respectively 
when the two time-scales are comparable, while  Cases C and D correspond to «strong» 
energy addition for comparable time-scales and for «very fast heating», respectively. 
 
 Cases A-D are interpreted asymptotically and limit process analysis is applied to the full 
non-dimensional Euler equations to derive  «reduced» equations.  A physical 
interpretation of the mathematical results follows without explcit reference to 
describing equations. 
 
2. Overview of results for an inert gas  
  
«Weak» heating, Case A,  demonstrates that the non-dimensonal thermodynamic 
variables experience only only small O(α) disturbances from their initial values and the 
non-dimensional induced velocity is small, O(α), compared to the initial speed of sound 
in both the micro- and macrovolumes. The reduced equations devolve to linear non-
homogenous acoustic wave equations as in Chu [5], for example.  The non-homogeneous 
terms represent the effects of both instantaneous and historical heat deposition.  The 
nondimensional efflux mass from the mircovolume expansion and the efflux speed are 
«weak», O(α), implying that only equally «weak» acoustic disturbances driven by the 
«piston effect» , (Liepmann and Rosko [8])  appear in the unheated gas surroundings. The 
acoustic field for the macrovolume depends on the shape of the container and the 
appropriate boundary conditions.  
 
Case B leads to larger, O(1), thermodynamic variable changes and an induced velocity 
comparable to the initial speed of sound.  The full compressible Euler equations describe 
the larger  thermomechanical response in both micro- and macrovolumes, characterized 
by more signifcant microvolume expansion with the possibility of «weak» shocks being 
generated in the unheated gaseous environment by the «piston effect». As long as the 
macrovolume energy deposition is distributed throughout the space, O(1) pressure and 
velocity distubances will occur. 
 
«Strong» energy addtion on a time-scale comparable with the initial acoustic time-scale 
in Case C  causes  an O(α)>>O(1)  increase in temperature, an inversely large decrease in 
density and a very small change, O(1/α)<<O(1), in pressure.  This non-intuitive nearly 
isobaric thermo-mechanical response occurs because the acoustic time-scale within either 
volume becomes very small as the gas heats up.   As a result the energy addition time-
scale is much longer than the hot acoustic time, and pressure disturbances can be nearly 
spatially homogenized.  The reduced equations are nonlinear and non-hyperbolic.  The 
transient temperature increase in a fluid particle, and the localized gas expansion 
(positive divergence of the induced velocity field), are proportional to the local power 
deposition. The mass efflux of high temperature gas relative to the initial mass in the 
microvolume is very small, O(1/α)<<O(1) because the density of the heated gas is 
O(1/α),.The dimensional induced speed is comparable with  the initial speed of sound 
implying that microvolume expansion will drive weak shocks into the surrounding 
unheated gas.  In contrast the internal induced Mach number is very small, O(1/α1/2) the 
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result of a very large hot speed of sound. The macrovolume will experience large 
temperature variations but only very minor pressure distubances. 
 

 The asymptotic analysis for Case D, corresponding to «strong» energy addition on a 
time-scale short compared to the initial acoustic time-scale, demonstrates that the 
parameter combination ε2α plays a crucial role in determining the physical response of 
the gas.  The absolute temperature and pressure variations are both large O(α) while the 
induced speed is O(εα).   

Case D1 

When ε2α << O(1) the small density perturbation is O(ε2α).  The non-hyperbolic,reduced 
equations describe constant volume heating to a first approximation, with a pressure 
gradient driven induced velocity field of order O(εα) << O(1/ε).  This unusual, non-
intuitive result implies that the expanding micro-volume can generate a wide range of 
mechanical disturbances in the external unheated gas, ranging from weak acoustic to 
strong shock waves depending on the individual sizes of α and ε.  In a related way the 
induced speed in the fixed macro-volume can be quite large while the «large» pressure is 
characterized by O(α). The internal speed of sound will be very large, due to the large 
temperature, so that the relevant Mach number is is O(ε2α)1/2 << O(1).  

Case D2 

A distinguished limt is defined for ε2α = O(1). The describing equations are the full 
compressible non-linear Euler equations in terms of scaled variables for temperature, 
pressure and induced speed.  The non-dimensional value of the latter is either 
O(1/ε)>>O(1), for a given α, or O(α1/2)>>O(1), for a given ε. Unlike the previous 
example the density variation is O(1).  The relative mass efflux is O(ε) because the 
heating time-scale is relatively short.  In the context of a fixed macro-volume, «fast» and 
«large» energy release is the source of a «large» pressure increase from the initial value,  
a result that may be of interest in the study of reactive gas  thermo-mechanics, described 
in Section 3 below. 
 
 
3. Overview of results for a reactive gas 
 
A one step, exothermic high activation energy Arrhenius reaction is used to drive the 
thermomechanical evolution of a reactive gas from an imposed spatially variable initial 
state.  The compressible reactive Euler equations amended by a species equation with 
diffusion suppressed provide a viable mathematical model [1]. Thermal explosion theory, 
Kassoy [9] is used to describe the induction period for  the reaction on  a time-scale 
denoted by ti. Three non-dimensional parameters are identified; 
 

A. (ti/tA), where tA is the characteristic acoustic time-scale in the initial state of the 
volume, 
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B. β << O(1)  is the non-dimensional high activation energy parameter familiar in 
thermal explosion theory, 

C. HR is the non-dimensional heat of reaction. 
 

Asymptotic methods are used to find reduced forms of the full Euler equations in the 
context of thermal explosion theory when the initial state is described by small, O(β), 
deviations from an undisturbed base state like that used in the inert gas study. The 
induction time-scale is defined in terms of the parameter β in the usual way [9]. In the 
limit β à0 the nonlinear convection terms are suppressed.   
 
When ti/tA =O(1) the reduced equations devolve to non-homogeneous linear wave 
equations for each of the O(β) thermodynamic and species perturbation varibles, and a 
vector wave equation for the O(β ) induced velocity  Non-linear reaction terms depending 
on the time-history of the rising temperature perturbation, the sources of transient 
spatially distributed exothermic heat release, drive the variations in all perturbation 
variables.  Given experience with thermal explosion theory [9] it is possible that one kind 
of temperature perturbation evolution will be characterized by a gradual increase during 
the induction time period, followed by a classical logarithmic singularity at the finite 
«explosion time» leading to a very brief period of large temperature increase during 
which most of the heat of reaction is released.  If the heat of reaction parameter 
HR>>O(1) the results described for Case D, above may be germane.   Alternatively, the 
temperature increase may be limited by the cooling effect of gas expansion. Numerical 
solutions for the perturbation wave equations are needed to quantify the time-history for 
finite values of ti/tA. 
 
If the induction time-scale is assumed short compared to the acoustic time-scale, the limit 
ti/tAà0 is used to derive the reduced equation set, intiially for HR =O(1).  Compressibility 
effects are suppressed!  The density and velocity perturbations are O(ti/tA)1/2<<O(1) and 
O(ti/tA)<<O(1), respectively.  The non-hyperbolic reduced equations feature a 
«classical», constant density thermal explosion [9] expression for the temperature 
perturbation and a pressure pertubation equal to the temperature perturbation.  The 
induced velocity is driven by the gradient of the pressure perturbation and is compatable 
with the minor density variation. The analytical solution for the temperature perturbation  
includes a logarithmic singularity at a finite explosion time value.  That singularity 
appears in  all of the variable solutions. The singularity characteristics combined with the 
asymptotic expansions for the thermodynamic and velocity variable are used to show that 
the thermal explosion is followed by an exponentially short period relative to ti, during 
which O(1) changes in all the variables occur if HR=(1) [9].  If HR>> O(1) the description 
above for  Case D provides a physical understanding of the consequences of «fast», 
«large» energy deposition into a gas volume.  In particular, the microvolume will 
experience a «large» rapid increase in temperature and pressure and a significant induced 
velocity leading eventually to the generation of strong mechanical disturbances in the 
unheated nearby gas.  Presumably these waves can pressurize the entire larger 
environment.  Similarly the entire macrovolume will experience strong mechanical 
disturbances if the assumed combustion process is distrubted throughout the volume.  
The complete analysis will be presented at the conference. 
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4. Preliminary Conclusions 
 
The thermo-mechanical response of a gas to thermal energy deposition depends 
intimately on both the deposition time-scale (ε) and quantity of energy added (α) during 
that interval. Some combinations of the parameters are compatible with hyperbolic 
equations while others are not.  Surprisingly, some responses are characterized by nearly 
constant volume physics, while others occur in a nearly isobaric manner.  The results 
demonstrate that significant pressure variations can occur in fixed macro-volumes when 
the two parameters have appropriate values. The mechanism is not likely to be described 
by solutions to linear or nonlinear wave equations used in traditional combustion 
chamber stability studies. The novel message here is that pressure disturbances in 
combustion chambers can arise either from a distributed set of active discrete micro-
volumes or from heating distributed throughout a macro-volume 
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