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1 Introduction

The safe storage and transportation of reactant gas mixtures requires conditions that ensure a negligibly small reac-
tion rate, achieved in storage vessels and transport pipes by lowering sufficiently the wall temperature. The seminal
investigation of this problem is due to Frank-Kamenetskii (FK) [1, 2], who employed an overall irreversible reaction
with large activation energy to study a reacting mixture undergoing an exothermic chemical reaction in a centrally
symmetric closed vessel with constant wall temperature. The resulting gas-temperature distribution was seen to de-
pend on the competition of the heat released by the chemical reaction and the heat losses to the wall, characterized
by the Damköhler number δ, defined as the ratio of the conduction time across the vessel to the relevant characteristic
time evaluated at the wall temperature [3]. A slowly reacting flameless mode of combustion is found for values of
below a critical value, when the heat losses to the wall are able to limit the temperature rise, in such a way that the
reaction rate does not change in order of magnitude from its near-wall value. Since the overall heat-release rate is
proportional to the volume of reacting gas while the heat-loss rate to the wall is proportional to the wall surface, for a
given wall temperature there exists a limiting size, corresponding to a critical value of δ, above which a slow reaction
cannot be maintained, and is replaced by a localized temperature runaway that leads to the formation of a flame [4,5].
These classical results find direct application in connection with the safety storage of reactant mixtures, defining crit-
ical sizes for thermal explosions in chemically reacting systems. A related problem addressed here is that of reactant
transportation in pipes, with specific consideration given to the entrance region adjacent to the storage container.

2 Formulation

Consider a gaseous reactant mixture with initial temperature, density, and reactant mass fraction T ′I , ρ′I , and Yo dis-
charging from a storage vessel along a pipe of radius a whose wall temperature is kept at a fixed value T ′o > T ′I . As in
FK’s work [1], our analysis considers an overall Arrhenius reaction, with the mass of reactant consumed per unit vol-
ume per unit time ṁ given by ṁ/ρ′ = k(T ′)Yr = B exp[−E/(RT ′)]Yr, where ρ′, T ′, and Yr represent the density,
temperature and reactant mass fraction. The temperature-dependent reaction-rate constant k = B exp[−E/(RT ′)] =
B exp[−E/(RT ′o)] exp[β(T ′ − T ′o)/T ′], includes a frequency factor B and an activation energy E, with R denoting
the universal gas constant. The characteristic activation temperature E/R is assumed to be large compared with the
wall temperature, resulting in a temperature-sensitive rate constant that changes from its wall valueB exp[−E/(RT ′o)]
by a factor of order unity when T ′ − T ′o ∼ RT ′2o /E = T ′o/β � T ′o, where RT ′2o /E is the so-called FK temperature
and β = E/(RT ′o)� 1 is the nondimensional activation energy.

The heat-release rate of the reaction per unit volume is given by qṁ, where q denotes the amount of heat released
per unit mass of reactant consumed. Correspondingly, the time te needed for the heat-release rate of the chemical
reaction to increase the enthalpy by an amount cpT ′o/β, proportional to the FK temperature RT ′2o /E, is given by
te = exp[E/(RT ′o)]/αβB where α = (qYo)/(cpT

′
o) ∼ 1 is the dimensionless temperature rise, based on T ′o, for

constant-pressure adiabatic combustion, with cp representing the constant specific heat at constant pressure. The
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Figure 1: The variation with axial distance of T , Y , and ω = Y exp[β(T − 1)/T ] at r = 0 obtained by numerical
integration of (1)–(4) with Pr = 0.7, Le = 1.0, β = 10, α = 5, and TI = 0.5 for δ = 1.0 (squares) and δ = 5.0
(plain); the bottom plots show the axial velocity profiles at five different locations.

chemical time can be compared with the characteristic heat-conduction time across the pipe tc = a2/DT , where DT

is the thermal diffusivity evaluated at T ′o, to define the FK parameter δ = tc/te = (a2/DT )αβB exp[−E/(RT ′o)],
a Damköhler number characterizing the slowly reacting mode of combustion of enclosed reactant mixtures, with the
value δ = 2 identifying the explosion limit [1–3]. A convenient characteristic value for the streamwise flow velocity
U = G/(ρ′oπa

2) can be defined from the known mass flow rate G by using the density ρ′o = ρ′IT
′
I/T

′
o evaluated at

T ′ = T ′o. This velocity defines the Peclet number of the pipe flow Pe = Ua/DT , comparable in magnitude to the
associated Reynolds number Re = Pe/Pr, with Pr denoting the order-unity Prandtl number of the gaseous mixture.
The following analysis pertains to configurations with moderately large values of the Peclet number for which the flow
in the pipe is stable and slender, with a characteristic streamwise development length ` = Pe a much larger than the
pipe radius a. The resulting steady laminar flow can be analyzed in the boundary-layer approximation by integrating
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for x > 0 and 0 < r < 1 supplemented with the equation of state ρT = 1 and subject to the initial conditions
u − TI = T − TI = Y − 1 = 0 at the pipe entrance, and the boundary conditions ∂ru = v = ∂rT = ∂rY = 0 at
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r = 0 and u = v = T − 1 = ∂rY = 0 at r = 1 for x > 0, as corresponds to axially symmetric flow bounded by a
non-permeable constant-temperature wall with non-slip flow.

In the formulation the axial and radial coordinates x′ and r′ are scaled with ` = Pe a and a according to x = x′/` and
r = r′/a, while their associated velocity components u′ and v′ are scaled with U and DT /a to give u = u′/U and
v = v′/(DT /a), respectively. With the scale selected for the axial velocity, its initial uniform value u′I = G/(ρ′Iπa

2)
becomes u′I/U = ρ′o/ρ

′
I = TI when expressed in dimensionless form. The reactant mass fraction Yr is normalized

with its initial value Yo to give Y = Yr/Yo, and the temperature and density are scaled with T ′o and ρ′o to give the
nondimensional variables T = T ′/T ′o and ρ = ρ′/ρ′o. The unknown streamwise pressure gradient Pl(x) has been
scaled with its characteristic value ρ′oU

2/`. The problem esentially depends on four nondimensional parameters,
namely, the activation energy β = E/(RT ′o), the heat-release parameter α = (qYo)/(cpT

′
o), the Damköhler number

δ, and the initial-to-wall temperature ratio TI = T ′I/T
′
o < 1. The analysis below considers the simplified solution that

arises for moderately large values of β with α ∼ 1, δ ∼ 1, and 1−TI ∼ 1. A full numerical integration of the problem
is displayed in Fig. 1 for two representative subcritical and supercritical cases.

3 The chemically frozen entrance region

As discussed above, the flow in the tube includes an entrance development region of characteristic length ` = Pe a,
corresponding to values of x of order unity, where the velocity profile evolves from an initial uniform profile u = TI

to a Poiseuille profile u = 2(1 − r2) while the temperature evolves from the initial value T = TI < 1 to the wall
value T = 1. As a consequence of the exponential temperature dependence of the reaction rate discussed earlier, the
chemical reaction can be entirely neglected as long as 1− T � β−1, so that the reactant mass fraction remains equal
to its initial value Y = 1 in this entrance region, as can be seen by integrating the chemically frozen version of (4) with
initial condition Y = 1 at x = 0 and boundary conditions ∂rY = 0 at r = 0 and r = 1. The associated distributions
of u and T are obtained by integration of (1)–(3) with the corresponding initial and boundary conditions given above;
the chemical reaction being discarded in (3). The solution depends on the initial temperature TI and on the transport
description through the values of σ and Pr, with the realistic values σ = 0.7 and Pr = 0.7 selected in the integrations
reported below, as is appropriate for fuel-air gas mixtures [8].

As seen in Fig. 1, depending on the conditions, the temperature either continues to increase, leading to a thermal
runaway at a finite distance downstream, or reaches a maximum value T − 1 ∼ β−1 corresponding to a quasisteady
balance between the heat released by the chemical reaction and the heat losses to the walls. The asymptotic temperature
distribution for the non-reacting gaseous pipe flow at x� 1 is given by

T − 1 = −C exp(−λ21x/2) exp(−λ1r2/2)L(λ1−2)/4(λ1r
2), (5)

as can be obtained by using separation of variables in
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]
, (6)

derived by linearizing (3) for T − 1� 1 with u ' 2(1− r2) and v ' 0. Here L(λ1−2)/4 is the Laguerre polynomial
of order (λ1 − 2)/4, with the value of λ1 = 2.704 determined as the smallest root of the equation L(λ−2)/4(λ) = 0
associated with the condition T = 1 at r = 1. The factor C is an unknown positive constant obtained from the
numerical integration of the entrance flow.

4 Slowly reacting flow

The exponential temperature decay (5) is modified as the chemical reaction begins to have a significant effect, which
occurs when the temperature drop from the wall value 1− T decreases to values of order β−1 across most of the pipe
section. The condition 1 − T = β−1 evaluated with use made of the temperature drop along the axis 1 − T (x, 0) =
C exp(−λ21x/2) given in (5) provides xd = (2/λ21) ln(Cβ), as an expression for the downstream location xd where
the reaction becomes important, marking the end of the chemically frozen flow. The following region of incipient

26th ICDERS – July 30th–August 4th, 2017 – Boston, MA 3



Daniel Moreno-Boza Large-activation-energy analysis of gaseous reacting flow in pipes

Figure 2: The temperature evolution obtained by integration of (8) with corresponding initial and boundary conditions
for different values of δ, including the evolution with distance of the temperature along the axis for subcritical and su-
percritical cases along with selected temperature profiles for δ = 5 [x̂ = (0, 0.999, 4.999, 9.299, 9.678, 9.686, 9.687)]
and δ = 10 [x̂ = (0, 2.010, 4.826, 5.933, 6.028, 6.032, 6.033)].

chemical reaction can be described in terms of x̂ = x − xd and θ = β(T ′ − T ′o)/T ′o, reducing the problem to the
integration of
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with initial conditions θ + exp(−λ21x̂/2) exp(−λ1r2/2)L(λ1−2)/4(λ1r
2) = Y − 1 = 0 as x̂ → −∞ and boundary

conditions ∂rθ = ∂rY = 0 at r = 0 and θ = ∂rY = 0 at r = 1. The FK linearization exp[β(T − 1)/T ] =
exp[θ/(1 + θ/β)] ' eθ has been employed in writing the reaction rate in (7), as it is appropriate in the limit β � 1
with θ ∼ 1.

5 The first reaction stage

The analysis of the chemical reaction at distances x̂ = x − xd ∼ 1 determines whether the solution undergoes a
thermal runaway, as occurs for supercritical cases with δ > 2, or whether the flow evolves into a quasisteady slow
mode of combustion that persists farther downstream, as occurs for δ ≤ 2. In this transition region x ∼ 1 with θ ∼ 1
the change in reactant mass fraction is small, of order 1− Y ∼ (αβ)−1 � 1, as follows from (7), so that the problem
reduces to the integration of
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)
+ δeθ (8)

subject to the initial and boundary conditions given above. Selected results of computations are shown in Fig. 2. For
subcritical cases with δ ≤ 2 the temperature evolves towards the steady distribution

θFK = 2 ln
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1 + (δ/2)[r/(1 +
√

1− δ/2)]2

}
(9)

corresponding to the cylindrical FK problem
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(0) = θFK(1) = 0. (10)
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Figure 3: (left) The variation with δ > 2 of the thermal-runaway distance x̂t = xt − xd, with the dashed curve
representing the near-critical asymptotic result x̂t ' 1.62(δ − 2)−1/2. (middle and right) Comparison of the thermal-
runaway distance with the full numerical computations (dots) as a function of δ and β, respectively, for Pr = 0.7,
α = 5, Le = 1 and TI = 0.5.

The associated temperature along the axis θ(x̂, 0) is seen to approach θ(x̂, 0) = 2 ln[2/(1 +
√

1− δ/2)] for x � 1,
with the limiting value θ(x̂, 0) = 2 ln 2 reached for the critical case δ = 2. On the other hand, for δ > 2 the transition
stage ends with a thermal runaway at a finite downstream location x̂t = xt − xd ∼ 1.

The resulting thermal-runaway location x̂t, a decreasing function of δ, is shown in Fig. 3, together with a comparison
with numerical results. The ignition distance computed here differs by a factor of order unity from that computed
earlier in [7], where integrations of (8) were started with an initially uniform gas temperature, equal to the wall value.
The present analysis, accounting for the presence of the reaction-free entry region, provides a prediction for the dis-
tance from the entrance of the pipe x′t at which ignition occurs, given in nondimensional form xt = x′t/[G/(πρ

′
oDT )]

by xt = xd(TI , β) + x̂t(δ) = (2/λ21) lnC + (2/λ21) lnβ + x̂t.

6 Downstream flameless combustion for δ ≤ 2

For subcritical values of the Damköhler number δ ≤ 2 the temperature in the pipe evolves towards the quasi-steady
distribution (9) for moderately large values of x̂. Most of the reactant consumption, negligibly small in the entrance and
transition regions, occurs downstream, at distances of order αβ`, such that the rescaled coordinateX = (x−xd)/(βα)
is of order unity, when Eqs. (7) become

2

αβ
(1− r2)

∂θ

∂X
=

1

r

∂

∂r

(
r
∂θ

∂r

)
+ Y δeθ, and 2(1− r2)

∂Y

∂X
=

αβ

Le r

∂

∂r

(
r
∂Y

∂r

)
− Y δeθ, (11)

to be solved with the boundary conditions given earlier. Equations (11) indicates that during this second stage trans-
verse diffusion of the reactant is so fast that its mass fraction remains spatially uniform across the pipe at leading order,
so that Y ' Ȳ (X) with errors of order 1/(αβ), while the temperature evolves in a quasi-steady manner as dictated by

1
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in the limit βα � 1. As can be inferred from (10), the solution to (12) subject to ∂θ/∂r = 0 at r = 0 and θ = 0 at
r = 1 is just given by
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(13)

obtained by writing the FK temperature distribution (9) with δ replaced by the instantaneous Damköhler number δ Ȳ .
The evolution of Ȳ (X) is described, after some algebra, by
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Figure 4: Axial evolution of temperature, given by (13) with r = 0 and T = θ/β + 1, and mass fraction Ȳ , given
by (14), valid for X = (x− xd)/(αβ) ∼ 1 (dashed lines), compared with the full numerical simulation of (1)-(4) for
δ = 0.5 and 1, with α = 5, β = 10, Pr = 0.7, TI = 0.5 and Le = 1.

as an implicit representation for the reactant mass fraction as a function of the rescaled streamwise distance X =
(x − xd)/(αβ). The above expression applies for subcritical cases with δ ≤ 2 and a comparison with the full
numerical integration of the problem is available in Fig. 4.

7 Concluding remarks

The flow of an initially cold reactant mixture in a hot cylindrical pipe at moderately large values of the Reynolds
number has been analyzed in the limit of large activation energies. The flow includes an entrance region where the gas
temperature adapts to the wall value, followed by a shorter region of incipient reaction where the flow evolves to give
either a rapid thermal runaway leading to the generation of a flame or a quasi-steady flameless mode of combustion
that persists downstream along the pipe. Appropriate rescaled problems have been formulated, analyzed and compared
with full numerical integrations in the different regions, leading to predictions for the ignition distance in supercritical
cases and for the slow downstream reactant consumption encountered in subcritical cases.
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