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1 Introduction 

Shock tubes are typically used to measure ignition delay times - a fundamental property of fuels that is a 
function of temperature, pressure, and mixture concentrations. Bifurcation is the separation of the normal 
reflected shock wave splitting inside the boundary layer to form to opposing oblique waves. Bifurcation 
occurs because the boundary layer that is formed behind the incident shock wave is not able to negotiate 
the pressure rise across the reflected shock, and is therefore trapped and carried along at the base of the 
shock near  the sidewall [1, 2]. Bifurcation features normally appear in diatomic and polyatomic gases 
(such as fuel/air mixtures, mixtures with CO2) but not in argon diluted mixtures and its features have been 
well-known through experimental visualization utilizing color schlieren [3] and side-wall pressure 
measurements [4, 5]. Bifurcation has been modeled in many computational studies [6-9]. Bifurcation 
affects determination of time zero because of the uncertainty in determining the arrival of the normal 
shock wave at the sidewall location and its effects are severe as one moves away from the endwall and 
also for short ignition delay times (<100 s). In addition, it is commonly assumed that bifurcation should 
not affect the core portion of the post-shock region, which comprises most of the flow area [4]. However, 
a comprehensive study using multiple diagnostics to verify the influence of bifurcation and inhomogeneity 
on chemical kinetics is lacking in the literature though similar studies in rapid compression machines[10] 
have been carried out. In this work we focus on studying CH4/H2/CO ignition in O2 under the influence of 
bifurcation in heavily CO2 diluted mixtures. Multiple diagnostic techniques are used to determine accurate 
ignition delay times when bifurcation is present. 

 2 Experimental Procedure 

All of the experiments of this study were taken with a stainless steel shock tube. This shock tube has an 
inner diameter of 14.17 cm. The driver side is filled with helium and separated by a polycarbonate Lexan 
diaphragm. The driven side is filled to a specified pressure with a mixture prepared in a separate tank. 
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When this diaphragm ruptures, a shock wave is formed and quickly travels down the driven side of the 
shock tube and heats up the test mixture. Five piezoelectric pressure transducers (PCB 113B26) placed 
along the last 1.4 m of the shock tube were used to measure the incident shock wave velocity using four 
time-interval counters (Agilent 53220A). The incident shock wave attenuation was always less than 2%. 
With the known velocity and a measured initial temperature and pressure of the driven side, one 
dimensional ideal shock relations can be used to calculate the reflected shock wave temperatures and 
pressures  [11].  

Mixtures were created using a separate 33 L mixing tank attached with to the shock tube through a gas 
manifold. Mixtures were prepared using the partial pressure method using two MKS baratrons with full 
scale ranges of 100 and 10,000 torr, respectively. For all experiments, lab grade gases from NextAir with 
purities of 99% or higher were used. 

Data was recorded using a NI PCI-6133 Data Acquisition Device at 2MHz per channel. Measurements 
were taken radially at a test section 2 cm from the driven side end wall that contains eight ports. One of 
the ports has a piezoelectric pressure transducer (Kistler 603B1) to measure the pressure in the driven 
section. Another port contained a GaP transimpedance amplified detector (Thorlabs PDA25K) operating 
in the wavelength range between 150 and 550 nm. This detector is used to measure the emissions of 
combustion. No filters were placed in front of this detector in order to receive a clean signal from the 
experiment. A distributed-feedback inter-band cascade laser centered at a wavelength of 3.4034 μm 
(Nanoplus DFB ICL) detailed in [12-15] was used only to determine time-zero by the laser schlieren spike 
of the arrival of the reflected shock wave at the measurement location. 

The ignition delay time measurement was defined as the time interval between the arrival of the reflected 
shockwave and the onset of ignition at the measurement location. The arrival, or time zero, was 
determined by the laser schlieren spike of the laser. The onset of ignition was determined by evaluating 
the time history of the emissions and finding the steepest rise and then extrapolating down to the baseline 
measurement (method A). This method was described in a previous study [16]. This ignition onset was 
compared with the high speed imaging of the combustion event. The measured ignition delays were also 
compared with the predictions of two reaction mechanisms (GRIMech 3.0 [17] and AramcoMech 2.0 
[18]).  

High speed imaging of the shock tube was taken using a Phantom V710 camera. The camera has a 
1280x800 pixels CMOS sensor that is adjustable with the computer program Phantom Camera Control 
Application (PCC) to 256x256 pixel resolution at 67,065 frames per second. These settings enable a time 
resolution of 14.91 μs. The camera starts capturing images and is triggered by the output voltage of the 
Kistler type pressure transducer. Buffer images were taken before the triggering event as well. The camera 
is focused at the 2cm measurement location of the shock tube. A Fused Quartz end wall replaced the 
original stainless steel end wall to allow transparency. The images are post-processed on Matlab and the 
emissions are indexed in a matrix. Each element in the matrix is normalized to the highest intensity 
element (i.e. brightest image of the experiment). A false-color heat map is applied to each image with a 
circle drawn at the edge of the images to highlight the shock tube diameter. A camera emissions plot is 
then evaluated using the peak of the GaP transimpedance amplified detector and included in the plots of 
the data collection. The Color and Spectral Response Curve, [19], of the camera was then evaluated. 
Further details of this setup and details of the plot being normalized to the emissions detector can be found 
in [20]. 
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to understand the dynamics of the shock wave ignition, high speed camera images were taken for two 
different fuels, methane and syngas, to understand the effect of CO2 and bifurcation on the combustion 
process. It has been shown that the ignition delay time measurements were able to be captured with CO2 
dilution but the actual ignition process is not homogeneous based on the imaging. The images showed that 
the ignition event was confined to a much smaller cross section than in an argon bath. The chemical 
kinetic mechanisms were unable to predict the ignition delay times. To better understand bifurcation and 
ignition phenomena, additional experiments in CO2 dilution needs to be performed in the future. 
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