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Abstract

Recent studies have shown that for premixed flames freely propagating in narrow adiabatic channels differ-
ential diffusion induced instabilities may result in non-symmetric solutions and/or oscillating and rotating
propagation modes. This has been shown in the context of lean mixtures for which a single species trans-
port equation with a single Lewis number of the deficient reactant can be used to represent the propagation
problem. Here the effect of the stoichiometry is investigated within the framework of a two-reactant model
and with the diffusive-thermal (constant-density) approximation. Steady-state computations and linear sta-
bility analysis show that lean mixtures of very diffusive fuels result in flames with non-symmetric shapes
for positive incoming flow rates, but the symmetric shape is re-stabilized when we reach near-stoichiometric
conditions.

1 Introduction

Apart from the traditional safety implications concerning a flame propagation along ducts filled with a fuel
and oxidizer mixture, the propagation problem in narrow channels has received renewed attention in the last
decade due to the role in new technologies for microflow reactors. The understanding of the flame structure
and dynamics in such conditions results of fundamental interest for the future development of micro-power
generation and propulsion systems.

Among the important mechanisms that affect the flame propagation in channels we can mention the flame-
fluid interaction produced by the thermal expansion, the flame-wall heat exchange, the diffusive-thermal
effect or the chemical complexities. All those physical phenomena acting simultaneously can obscure the
role that each mechanism plays on the dynamics of the flame so it results convenient to study separately. Fol-
lowing this line, we consider adiabatic and non-reacting walls and concentrate into the effect of instabilities
associated with the differential diffusion for a full range of equivalence ratios. In view of the diffusive-
thermal approximation used herein, the density, the heat capacity, the thermal diffusivity and the molecular
diffusivity of the species are all assumed to be constant, as done in preceding studies [1, 2].
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2 Formulation

Consider a premixed flame propagating at velocity Uf in a planar adiabatic channel of infinite length and
height h, as shown in Fig. 2. The fuel-air mixture is at initial temperature Tu and immersed in a Poiseuille
flow with velocities u(y) = 6U0(y/h)(1− y/h) and v(y) = 0, where U0 is the mean velocity.

The chemical reaction is modelled through a one-step scheme νFF + νOO → Products + Q, where νF
and νO are the molar stoichiometric coefficients of the fuel and the oxydizer and Q is the heat of com-
bustion per νF mole of fuel consumed. The molar reaction rate is assumed to have the Arrhenius form
ω = Bρ2(WFWO)

−1YFYO exp (−E/RT ), as done in [3]. Herein, however, we consider unity reaction
orders. B is the frequency factor, E the activation energy, R the universal gas constant, T the temperature
of the mixture, YF and YO the mass fraction of the fuel and oxidizer, respectively, and WF and WO the
corresponding molecular weights.

The equivalence ratio of the mixture is defined as ϕ = sYFu/YOu , where s = νOWO/(νFWF ) and the
subscript u denotes condition in the fresh unburnt region (at x → −∞). For the sake of simplicity we
introduce the parameter Φ = (ν1W1Y2u)/(ν2W2Y1u), as done in [4]. The subscripts 1 and 2 stand for
the deficient and abundant reactants, respectively, and replace the subscripts F and O as appropriate. The
parameter corresponds with the equivalence ratio, Φ = ϕ, for fuel-rich mixtures and to its inverse, Φ = ϕ−1,
for fuel-lean mixtures.

The problem is non-dimensionalized with the channel width h and the diffusion time h2/DT . The reduced
temperature is defined as θ = (T − Tu)/(Ta − Tu), with Ta = Tu + QY1u/(cp ν1W1) the adiabatic flame
temperature. The mass fractions are normalized with the fresh upstream values in the form Y1 = Y ′

1/Y1u

and Y2 = ΦY ′
2/Y2u , where primes indicate non-reduced quantities. If we introduce the velocity of the planar

flame, SL, and the thermal thickness, δT = DT /SL, with DT the thermal diffusivity of the mixture, in a
coordinate system attached to the flame x → x − uf t, with uf = Uf/SL, the non-dimensional equations
become [2]

∂θ

∂t
+
√
d{uf (t) + 6my(1− y)}∂θ

∂x
= ∆θ + dω, (1)

∂Yi
∂t

+
√
d{uf (t) + 6my(1− y)}∂Yi

∂x
=

1

Lei
∆Yi − dω i = 1, 2, (2)

where the reaction rate is given by

ω =
β2

2Ls2L
Y1Y2 exp

{
β(θ − 1)

1 + γ(θ − 1)

}
, (3)

with L = Le1Le2(1 + A)/β and A = 1 + β(Φ − 1)/Le2. The parameters are: the Zel’dovich number
β = E(Ta − Tu)/RT 2

a , the heat release γ = (Ta − Tu)/Ta, the Lewis number of the deficient Le1 and
abundant Le2 reactant, the reduced mass flow rate m = U0/SL, and the Damköhler number d = (h/δT )

2.
The factor sL = SL/(SL)asp corresponds to the eigenvalue of the planar adiabatic problem, with (SL)asp =√

2BρDTY1u
ν2Le1Le2
W1β3 (1 +A) e−E/RTa the planar flame speed obtained with infinite activation energy.

The above governing equations need to be supplemented by the boundary conditions

x → −∞ : θ = Y1 − 1 = Y2 − Φ = 0,

x → +∞ : ∂θ/∂x = ∂Yi/∂x = 0, i = 1, 2,

y = 0 and y = 1 : ∂θ/∂y = ∂Yi/∂y = 0, i = 1, 2.

(4)
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3 Stability analysis

In parallel to the integration of Eqs. (1)-(2), we carry out a linear stability analysis of the steady symmetric
solutions perturbed in the form

θ(x, y; t) = θ0(x, y) + ϵθ1(x, y)eλt,

Yi(x, y; t) = Y 0
i (x, y) + ϵY 1

i (x, y)e
λt, i = 1, 2,

where λ ∈ C, with λR = Re{λ}, and ϵ is a small amplitude. As demonstrated in [1], infinitesimal per-
turbations of the flame propagation velocity can be excluded from the analysis without loss of generality.
The superindex “0” denotes the steady symmetric solution obtained from integration of (1)-(2) by reducing
the domain to half its heigh and imposing the symmetric conditions ∂θ/∂y = ∂Yi/∂y = 0 at y = 1/2.
Substitition of the above expressions into (1)-(2) leads to the linearized problem.

λθ1 = −
√
d{uf (t) + 6my(1− y)}∂θ

1

∂x
+∆θ1 + d k

(
Aθ1 + Y 0

1 Y
1
2 + Y 1

1 Y
0
2

)
, (5)

λY 1
i = −

√
d{uf (t) + 6my(1− y)}∂Y

1
i

∂x
+

1

Lei
∆Y 1

i − d k
(
Aθ1 + Y 0

1 Y
1
2 + Y 1

1 Y
0
2

)
, i = 1, 2, (6)

where

A =
β Y 0

1 Y
0
2

[1 + γ(θ0 − 1)]2
and k =

β2

2Ls2L
exp

{
β(θ0 − 1)

1 + γ(θ0 − 1)

}
.

To study the emergence of non-symmetric modes we solve the system (5)-(6) with boundary conditions

x → −∞ : θ1 = Y 1
i = 0, x → +∞ : ∂θ1/∂x = ∂Y 1

i /∂x = 0,

y = 0 : ∂θ1/∂y = ∂Y 1
i /∂y = 0, y = 1/2 : θ1 = Y 1

i = 0.
(7)

The method developed in [1] was used to compute the main eigenvalue with the largest real part, in what
follows denoted by λR, of the above linearized problem. For λR > 0 the steady symmetric solution is
unstable and the flame acquires a non-symmetric shape. The stability of the steady non-symmetric solution
always gives λR = 0 with this method (except in double-valued regions) so it is not presented in this work.

4 Results and discussion

We address the effect of the equivalence ratio on very diffusive fuels. In particular, we consider LeF = 0.3
and LeO = 2 as the representative Lewis numbers of hydrogen-air mixtures [5] both evaluated for very lean
and very rich mixtures, respectively. If we consider that the adiabatic temperature and activation energy does
not depend on the equivalence ratio, i.e., by diluting the mixture with an inert gas in an adequate proportion,
see [6], the values of β and γ in (3) are held constant, facilitating the description. In what follows we use
β = 10 and γ = 0.8 as representative values.

Fig. 1 (left) shows the resulting steady propagation velocity uf with the flow rate for d = 20. Solid curves
represent stable solutions (symmetric or non-symmetric) and dashed curves are unstable symmetric solu-
tions. For m < 0 (assisted flow) the flame shape is symmetric and propagates steadily downstream in the
direction of the flow (uf > 0). The case m < 0 must be understood as follows. Imagine the fuel-air mixture
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Figure 1: The variation with the flow rate of the propagation velocity uf (left) and the growth rate λR (right).
Calculated for LeF = 0.3, LeO = 2, and d = 20.

is initially flowing with a mass flow rate m. If we ignite the mixture at some point two flames will emerge,
one propagating with m > 0 and the other one will see the flow with m < 0. Increasing the flow rate from
the negative values, and for lean flames below ϕ < 0.89 a first (supercritical) bifurcation point at m = mb1

arises (marked with •). The symmetric solution is then unstable and the flame becomes non-symmetric, as
can be seen in Fig. 2 where the resulting flame shapes at the conditions marked with symbol △ are plotted.
Interestingly, rich, stoichiometric and near-stoichiometric lean flames remain symmetric for any value of
the flow rate m, but lean mixtures below ϕ < 0.89 exhibit non-symmetric solutions. For ϕ = 0.8 the flame
shape recovers the symmetric solution at a second (subcritical) bifurcation point mb2 = 1.35 (also marked
with •) and we find a double-valued region where both symmetric and non-symmetric solutions are possible.
For ϕ ⩽ 0.7 the second bifurcation point moves to mb2 → ∞ indicating that the flame holds non-symmetric
shapes for all range of positive values of m, in agreement with the results for a single species model [1].

The stability analysis of the symmetric solutions validates the results found in the steady-state calculations.
For example, Fig. 1 (right) depicts the growth rate λR of the symmetric solution with the flow rate. The figure
shows that for ϕ = 0.8 non-symmetric flames emerge in the range mb1 ⩽ m ⩽ mb2 , with mb1 = −0.1 and
mb2 = 1.35, where λR > 0. Mixtures with ϕ > 0.89 do not suffer from the break of symmetry.

Qualitatively similar solutions are found in wider channels with larger values of d. An example is shown in
Fig. 3 for d = 80. Contrary to d = 20, the stoichiometric flame ϕ = 1 is non-symmetric for −0.4 ⩽ m ⩽
0.8. In Fig. 4 we depict the regions with different flame solutions in the d vs. ϕ space for m = 0, indicating
that mixtures with ϕ ≳ 1.3 result stable to non-symmetric perturbations independently of the channel size.

5 Concluding remarks

Steady-state calculations and linear stability analysis were employed to investigate the effect of the stoi-
chiometry on the break of symmetry for flames propagating in narrow adiabatic channels. In the numerical
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Figure 2: (Color online) Structure of the flame front represented by the isocontour of the abundant mass
fraction Y2 for ϕ = 0.8 (left) and ϕ = 0.7 (right) at the flow rates marked with symbol △ in Fig. 1. Black
dashed lines separate the region with mass fraction below the equilibrum value Y2(x → ∞) = (Φ− 1).

experiment, we selected LeF = 0.3 and LeO = 2 as the Lewis number of fuel and oxidizer, respectively.
The computations show that lean mixtures suffer from differential-diffusion induced instabilities and that
when this occurs, the Poiseuille flow contributes to flame destabilization toward non-symmetric shape solu-
tions. Near-stoichiometric flames can, however, stabilize the non-symmetric solution to symmetric flames,
indicating that those flames do not suffer from diffusive-thermal instabilities. The critical equivalence ratio
above which these instabilities do not alter the symmetric shape was found to be close ϕ = 1.3 for m = 0.
The Poiseuille flow (m > 0) can substantially modify this critical equivalence ratio.
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Figure 3: The variation with the flow rate of the propagation velocity uf (left) and the growth rate λR (right).
Calculated for LeF = 0.3, LeO = 2 and d = 80.
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Figure 4: The variation with the equivalence ratio of the critical Damköhler number dc for m = 0, separating
regions of symmetric and non-symmetric flame solutions. Calculated for LeF = 0.3 and LeO = 2. The
symbol ▼ indicates the calculation for a single species model given in [1], with dc = 11.2.
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