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1 Introduction

This study is motivated by recent theoretical developments in premixed gas combustion revealing positive
feedback between the advancing flame and the flame-driven pressure build-up, which results in the thermal
runaway when the flame speed exceeds a critical level [1-4]. The present study is an application of this
finding to the problem of deflagration-to-detonation transition (DDT) of a spherical flame expanding in an
unconfined environment.
As has long been conjectured, in the unconfined system the expected transition might be caused by the
flame acceleration induced by the Darrieus-Landau instability (wrinkling) [5-8]. Indeed, it has been shown
recently [4], that for the wrinkled spherical flame the transition may be modeled even within the framework
of a one-dimensional formulation by merely replacing the reaction rate termW by Σ2W , with Σ being the
degree of folding [1] - the ratio of the total area of the wrinkled front to thearea associated with its average
radiusR. For large radiiΣ ∝ Rd−2, whered is the wrinkled front fractal dimension [6-8]. WithinΣ-based
formulation the transition may be triggered at any initial temperatureT0 and pressureP0, as soon asR
becomes large enough.
The present study is an extension of our recent exploration of theΣ-model (Sec. 4 of Ref. [4]), based
on ignition-temperature kinetics and planar geometry, over (i) one-step Arrhenius kinetics and spherical
geometry, and (ii) multistep hydrogen-oxygen kinetics and numerically more benign planar geometry.

2 Spherical geometry: one-step Arrhenius kinetics

For the spherical geometry the appropriately scaled set of governing equations reads:
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∂r̂

)

(4)

heat,
1

γ
ρ̂

(

∂T̂

∂t̂
+ û
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Here,P̂ = P/P0 is the scaled pressure in units of the initial pressure,P0; Ĉ = C/C0 is the scaled mass
fraction of the deficient reactant in units of its initial value,C0; T̂ = T/Tp is the scaled temperature in units
of Tp = T0 + QC0/cp, the adiabatic temperature of burned gas (products) under constant pressure,P0; T0

is the initial temperature of unburned gas;Q is the heat release;σp = T0/Tp; γ = cp/cv; cp, cv are specific
heats;ρ̂ = ρ/ρp, whereρp = P0/(cp − cv)Tp is the density of combustion products in free-space isobaric
deflagration;̂u = u/ap is the scaled flow velocity;ap =

√

γ(cp − cv)Tp is the sonic velocity atT = Tp;
t̂ = t/tp, r̂ = r/rp, rp = aptp, where the reference time is defined astp = Dp

th/u
2
p; Dp

th is the thermal
diffusivity at T = Tp; up is the velocity of the free-space deflagration relative to the burned gas, regarded
as prescribed;ε = (up/ap)

2 = (lth/rp)
2 is the scaled thermal diffusivity;lth = Dp

th/up is the flame width;
Pr andLe are the Prandtl and Lewis numbers, respectively;Ŵ = Wtp/ρpC0 is the scaled reaction rate.
For simplicity, molecular transport coefficients are assumed to be constant.
The reason forΣ2 in Eqs. (5) (6) is explained as follows. According to the classical Zeldovich-Frank
Kamenetskii analysis, for a low Mach number planar flame its propagation velocity is proportional to the
square root of the reaction rate. On the other hand, the effective velocity of the wrinkled flame is proportional
to its degree of folding,Σ [1]. Hence, the effective reaction rate of the wrinkled flame should be proportional
toΣ2. Indeed, simulations of theΣ2- based models corroborate this assessment, at least for moderately high
Σ-s (see Ref. [3] and Fig. 3(b) below).
The reaction rateW is modeled by the one-step Arrhenius kinetics, whose scaled versionŴ reads,

Ŵ = Zρ̂nĈ exp[Np(1− T̂−1)], (7)

whereZ = 1
2Le

−1N2
p (1− σp)

2 is the normalizing factor to ensure that atNp ≫ 1 and isobaric conditions
(ε ≪ 1) the scaled planar deflagration speed relative to the burned gas approachesΣ

√
ε. HereNp = Ta/Tp
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is the scaled activation temperature.
According to the well known Gostintsev correlation [6], for large radii
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Equations (1)-(6) are considered over a semi-infinite intervalâ < r̂ < ∞. Hereâ is a small number to avoid
dealing with the zero/zero limit at̂r → 0. The pertinent solution is required to meet the following initial
and boundary conditions,

T̂ (r̂, 0) = σp + (1− σp) exp [(â− r̂)/l̂], Ĉ(r̂, 0) = 1, P̂ (r̂, 0) = 1, ρ̂(r̂, 0) = 1/T̂ (r̂, 0), û(r̂, 0) = 0
(11)

∂T̂ (â, t̂)/∂r̂ = 0, ∂Ĉ(â, t̂)/∂r̂ = 0, û(â, t̂) = 0, (12)

T̂ (+∞, t̂) = σp, Ĉ(+∞, t̂) = 1, P̂ (+∞, t̂) = 1, ρ̂(+∞, t̂) = 1/σp, û(+∞, t̂) = 0 (13)

The scaled flame radiuŝR is defined as,
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In the chosen units the scaled velocity of Chapman-Jouguet detonation becomes,

D̂CJ = DCJ/ap =
1
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(15)

In numerical simulations the parameters employed are specified as follows,

Pr = 0.75, Le = 1, Np = 4, n = 3, γ = 1.3, ε = 0.0025, σp = 0.125, K = 0.289, â = 0.01, l̂ = 0.005.
(16)

In dimensional units this parameter set may correspond to,

T0 = 293K, Tp = 2, 344K, Ta = NpTp = 9, 376K, P0 = 1atm, a0 = 340m/s,

ap = a0/
√
σp = 962m/s, Dp

th = D0
th/σ

1.75
p = 1.9 · 10−3m2/s, D0

th = 5 · 10−5m2/s, (17)

u0 =
√
εσpa0 = 6m/s, up = u0/σp = 48m/s, A = 1000m/s

3

2 .

Parameters chosen in Eqs. (16) (17) are intended to represent a typical fast burning premixture rather than a
specific, e.g. H2/O2, system.
Note that relations (8) (9) are valid only for sufficiently largeR whereΣ exceeds unity. OtherwiseΣ is set
at unity. At the critical point whereΣ = 1, according to Eqs. (9) (16) and Fig. 1,R̂cr = K−3 = 41.429
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Figure 1: Time records of the flame speedD̂ and degree of foldingΣ. Unmarked line corresponds to the
case of unwrinkled flame,Σ = 1. The hats on the labels have been omitted.

andt̂cr = 700.
Figure (1) depicts time records ofΣ andD̂ = dR̂/dt̂. Here at the transition pointΣDDT = 2.86, t̂DDT =
5400, R̂DDT = 977, or in dimensional unitsRDDT = 0.766m (see (17)).
Note that upon the transition the level of wrinkling is expected to drop dramatically, effectively reducingΣ
to unity (see Fig. 13 of Ref. [3]). The post-transition raise ofΣ on Fig.(1) should therefore be considered
as the model’s artefact. Figure (2) shows spatial profiles of state variables at several equidistant instants of
time prior to the transition.
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Figure 2: Profiles of scaled pressure (P̂ ), temperature (̂T ), density (̂ρ) and gas velocity (̂u) at several consec-
utive equidistant instants of time adjacent to the transition point. The hats on the labels have been omitted.
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3 Planar geometry: hydrogen-oxygen system

To assessRDDT for a realistic multistep chemistry, while avoiding the issue of an enormous disparity
between the spatial scales involved aggravated by a large number of species and multicomponent transport,
the discussion here is restricted to the numerically more benign case of a planar geometry. At the same time
the parametricΣ(R) dependency is assumed to be valid (see also Sec. 4 of Ref. [4]).
Figure (3) shows flame speedD(Σ) dependency calculated for the stoichiometric hydrogen-oxygen mixture
at T0 = 300K andP0 = 1atm. The chemical and transport models adopted follow those of Refs. [9-11].
In this case atΣ = 1 one ends up withu0 = 10.1m/s,σp = 0.121 andup = u0/σp = 83.5m/s. At the
transition pointΣDDT = 8.2.
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Figure 3: Flame speedD(m/s) relative to unburned gas versusΣ for the planar geometry. Across the
transition pointD undergoes an abrupt increase fromD = 78m/s toD = 2, 800m/s. The right frame
corresponds to the reduced area,0 < D < 100m/s.

According to Gostintsev et al. [6], for2H2 + O2 mixtureA = 2, 530m/s
3

2 , and thereforeRDDT = 14.9m
(see Eq. (9)). This outcome explains the difficulties with experimental reproduction of the effect in an open
space.

4 Concluding remarks

• The aboveΣ -model presumably provides a qualitative reproduction of the classical experiment of
Zeldovich & Rozlovskii [5] on DDT in a closed spherical vessel (15cm inner diameter) filled with the
mixture ofH2(56.6%), O2(41.4%), CS2(2%) under elevated initial pressure (10atm). Here, prior
to the transition occurring atRDDT = 2.5cm, the precursor shock does not reach the outer boundary,
thereby imitating the situation in an unconfined environment.

• TheΣ-model offers a simple mechanism which might be responsible for DDT in thermonuclear su-
pernovae that attracts much attention nowadays [12].
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