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1 Introduction 
Shock and detonations in heterogeneous materials differ widely of similar phenomena in gas mixtures 
as temperatures and velocities disequilibrium are present among the phases with scales much larger 
than molecular ones. Chemical decomposition phenomenon is different as well, the ignition being 
governed by local effects (hot spots) resulting of these disequilibria. Materials equations of state are 
obviously also very different of those of gases. 
The present talk is devoted to the presentation of modern technical material in some of these areas: 
- Shock relations for multiphase mixtures with stiff mechanical relaxation [1]. These relations [2] 
enable accurate computation of the post-shock state and energy partition among the phases. 
- Generalized Chapman-Jouguet conditions [3]. In the detonation reaction zone, stiff mechanical 
relaxation holds but temperatures remain out of equilibrium. Heat exchanges result in non-negligible 
unreacted solid at the sonic surface and have similar (but weaker) effects as velocity divergence 
effects in non-ideal detonations. 
- A flow model valid just after the shock front where mechanical relaxation is stiff to the expansion 
zone, where velocity disequilibrium are present [4]. 
- A novel equation of state, simple and accurate for condensed energetic materials and temperature 
computation [5].  
Chemical decomposition and hot spots modelling in this theoretical frame are in progress. 
The paper is organized as follows. In Section 2 the symmetric variant of the BN model [6] is presented 
to model non-equilibrium two-phase flow mixtures. Its mechanical equilibrium reduced version [1] is 
recalled in Section 3 with the associated shock relations. The CJ and ZND associated models are given 
in Section 4. A method to fit these shock, ZND and CJ conditions in unsteady regime, 1D and multi-D 
is given in Section 5.  

2 Non-equilibrium flow model  
A symmetric variant of the two-phase flow BN model has been derived in [4]: 
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With the following definitions: αk ,ρk ,uk ,pk ,ek ,Ek ,Bk represent respectively the volume fractions, 
the densities, the velocities, the pressures, the internal energies, the total energies, the 'granular' or 
'configurational' energies. The effective pressures πk  are defined as πk = pk −βk . At mechanical 

equilibrium π1 = π2 and u1 = u2 . The rate at which mechanical equilibrium is reached is controlled by 

the relaxation parameters λ and µ . The heat exchanges are represented by Qk and mass transfer is 
absent for now. 

The phases total energies are defined as: Ek = ek +Bk (αk )+
1
2
uk
2 . 

The granular pressure is defined by: βk = αkρk
dBk
dαk

. This equation of state is determined from 

pressed granular beds experiments. 
The following formulation of interfacial variables render the model symmetric with respect to the 
phases indexes: 
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This symmetric formulation of the BN model has some advantages. As these formulas correspond to 
local ‘granular Riemann problem’ solutions, fluid-fluid interfaces, fluid-granular media interfaces as 

well as permeable interfaces are handled accurately by the non-conservative terms k k
I Iu ,
x x

∂α ∂α
π

∂ ∂
. 

When dealing with the computation of material interfaces there is no need to use interface 
reconstruction, Level Set, or any Front Tracking method. At interfaces, when a volume fraction 
discontinuity is present, interface conditions are matched automatically. 
Also, this system is entropy preserving: 
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As Q1 +Q2 = 0  and 1 2 1Q (T T )−: all production terms are non-negative. 
Last, the model is hyperbolic with 7 wave speeds instead of 6 in the BN model. This last feature is of 
paramount importance regarding numerical resolution [7]. 

3 Mechanical equilibrium model and shock relations 
When shock and detonation waves propagate in condensed energetic materials mechanical relaxation 
is so stiff (see [1,2] for relaxation time estimates) that a single pressure-single velocity model is 
enough accurate to describe the dynamics of such flows. The reduced model that results of asymptotic 
analysis at leading order reads [1], 
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where,  Γk  is the Gruneisen coefficient of phase k  and Ck
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2
 represents the 'effective' 

sound speed. The total mixture energy is defined as, 
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= ρ + α + ρ + α + . 

The mixture pressure is given by a mixture equation of state p = p(ρ,e,α1)  derived from: 

π1 = π2 , the mechanical equilibrium condition and, 

( ) ( )1 1 1 1 1 1 2 2 2 2 2 2e Y e ( ,p ) B ( ) Y e ( ,p ) B ( )= ρ + α + ρ + α , the mixture internal energy definition. 
This flow model is valid to describe mixtures of materials in mechanical equilibrium but is also very 
well suited to the computation of mixture cells (artificial smearing zones) in multi-material codes [8,9].  
The volume fraction equation of this flow model being non-conservative it is not possible to derive 
conventional shock relations. The following Hugoniot system was proposed in [2] and was 
demonstrated valid in the weak shock wave limit. For strong shocks is at been compared in the same 
reference to most published data and has shown excellent agreement as well. It reads, 
Yk =Yk

0 ,         

ρ(u −σ) =ρ0 (u0 −σ) =m ,       
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The key point relies in the last relations, that means that each phase evolves along its own 
Hugoniot curve, in pressure equilibrium with the other phases. 

4. Generalized CJ and ZND  
From the Neumann spike to the CJ point mechanical relaxation effects are stiff and the flow 
evolves in pressure and velocity equilibrium but in thermal and Gibbs free energy 
disequilibrium. Chemical decomposition effects result in mass transfer terms that must be 
added to the former flow model [10]. They result in the following volume fraction and mass 
equations, the remaining mixture momentum and energy equations being unchanged: 

∂α1
∂t

+ u
∂α1
∂x

=
(ρ2c2

2 −β2 )− (ρ1c1
2 −β1)

ρ1C1
2

α1
+
ρ2C2

2

α2

∂u
∂x

+ !m

c1
2

α1
+
c2
2

α2
ρ1C1

2

α1
+
ρ2C2

2

α2

+H(T2 −T1)

Γ1
α1

+
Γ2
α2

ρ1C1
2

α1
+
ρ2C2

2

α2

,  

∂α1ρ1
∂t

+
∂α1ρ1u
∂x

= !m , 

∂α2ρ2
∂t

+
∂α2ρ2u
∂x

= − !m . 

Mass transfer ( !m)  modelling is not addressed herein. As chemical decomposition is absent in 
the shock front, the Rankine-Hugoniot set given in the former paragraph is unchanged. 
Between the shock front and the CJ state, the ZND model corresponds to the former two-
phase flow model in steady regime and expressed in the shock front moving frame: 
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The velocity in the detonation frame of reference is denoted by Duu −= , with D the 
detonation velocity. The first equation of this system provides the generalized temperature 
non-equilibrium CJ condition [3, 11]:  
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at sonic point defined by wu C= . 

The mixture sound speed is given by 1
ρCW

2
=

α1
ρ1C1

2
+

α2
ρ2C2

2
. 

This algebraic system contains the conventional CJ conditions in the single phase limit and in 
the absence of heat transfer (or in the temperature equilibrium limit). Conventional CJ 
conditions are !m = 0  at sonic point defined by u c= . 
Generalized CJ conditions allow incomplete reactions at the sonic surface. More precisely, 
exothermicity of the chemical reaction is balanced by the internal heat exchange between the 
phases.  
The detonation wave structure can be computed with conventional ZND algorithms. For a 
given detonation speed: 

- The Hugoniot system is used to compute the Neumann spike.  
- The ODE system is solved from the Neumann spike to the CJ point. 
- Generalized CJ conditions have to be fulfilled at the sonic surface, otherwise the 

presumed detonation velocity has to be changed. 
Compared to the conventional ZND model based on the Euler equations knowledge of the 
heat exchange coefficient is needed. Computations have been done in [12] assuming zero heat 
exchange in various liquid explosive mixtures loaded by aluminium particles. In the absence 
of heat exchanges the CJ conditions reduce to !m = 0  when wu C= . As the sound speed wC  has 
non-monotonic behavior versus the volume fraction, important difference appear in the flow 
behavior and detonation speed compared to the conventional CJ condition u c= . Non-
negligible improvement in the detonation speed computation have been reported with this 
temperature disequilibrium approach [12, 13].  

5 Multi-D computations  
From the above theory and space and time relaxation scale analysis important facts appear: 
- At the shock front the jump conditions given in Section 3 are appropriate. But a difficulty appears at 
the discrete level. How to impose them in practical computations? 
- In the reaction zone, from the shock to the CJ surface the flow evolves in temperature disequilibrium 
but in pressure and velocity equilibrium. How to impose such behavior in the computations? 
- At the sonic surface some amount of solid is unreacted as a consequence of heat exchanges 
competition with exothermic reaction  as well as front curvature. Consequently reacting material will 
possibly react in the expansion zone. But  in this zone, as the detonation products density decreases 
mechanical relaxation is no longer stiff and the flow evolves in velocity disequilibrium. How to model 
and reproduce these effects? 
These various layers are schematized in Figure 1.     
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Figure 1. Schematic representation of a detonation wave and various specific zones. 

For the sake of conciseness, these specific treatments will be presented at the ICDERS 2015 oral 
session and in a forthcoming full length paper. 
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