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1 Introduction

In [14,15], the author discussed the role played by analogs in detonation theory. The analogs were clas-
sified as “physical” and “mathematical”. Physical analogs of detonations are real physical phenomena
that share many similarities with detonations. For example, hydraulic jumps [13] and traffic jams [11]
can be modeled as self-sustained shock waves, whose structure is very similar to that of a detonation
wave in the ZND theory [10]. That is, the shock is followed by a transonic flow region, and the shock
speed is determined by sonic conditions. A number of other physical analogs of detonation can be found
in the literature (e.g. [1,19]). Mathematical analogs, on the other hand, are ad hoc mathematical models
that consist of one or more partial differential equations whose solutions behave exactly as those of the
reactive Euler equations of detonation theory. The analogs are invented, not derived from first princi-
ples. The earliest and best known examples of such mathematical analogs are due to Fickett [7] and
Majda [18].

Wildon Fickett introduced his analog in 1979 “for the purpose of more easily studying various topics
in detonation theory” [7]. His idea was to essentially extend Burgers equation to incorporate chemical
reactions so as to obtain a model that would predict chemically driven shock waves analogous to deto-
nations. To be successful, such a model must be able to qualitatively reproduce known characteristics
of detonation waves. These include: (1) traveling-wave solutions of ZND theory; (2) linear instability
of these solutions when the reactions are sufficiently state sensitive; (3) existence of limit cycles be-
yond the stability threshold; (4) presence of period-doubling sequence of bifurcations leading to chaos;
(5) ignition/failure phenomena; (6) multiplicity of steady-state solutions in non-ideal detonations; (7)
existence of multi-dimensional cellular structures.

It may perhaps seem overly optimistic to hope that a simple model can capture such a rich set of phe-
nomena. And indeed, the predictive capabilities of the original models due to Fickett and Majda were
primarily limited to the steady-state one-dimensional structures. Instabilities were demonstrated for the
square-wave model of detonation [9], for which the linear stability problem is ill-posed (i.e., a patholog-
ical instability is present, see also [12]). In addition, Fickett performed preliminary calculations showing
that, provided the rate function is sufficiently state sensitive, the model with the rate that depends on the
shock state, can result in instabilities [8]. However, he never elucidated the nature of these instabilities.
In particular, no demonstration of the existence of limit cycles or period doubling bifurcations can be
found in [8].
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As a consequence of these findings and those based on Majda’s model [18], it was generally believed
that such modeling was perhaps too simplistic and therefore unable to reproduce most dynamics of
detonations.

However, recent publications demonstrate that this is not so. An extension of Fickett’s model that treats
the chemistry as a two-stage process, wherein an induction zone is followed by a heat release zone, is
capable of reproducing the dynamical richness of one-dimensional pulsating detonations [20]. Further-
more, even a scalar forced Burgers equation can be shown to capture qualitatively such diverse features
of one-dimensional detonations as the ZND solutions, their linear instability, nonlinear dynamics (in-
cluding chaos), ignition/failure effects, and multiplicity of solutions in non-ideal detonations [2–4, 16].
A two-dimensional extension of [16] is also possible that can be shown to reproduce the cellular dy-
namics of gaseous detonations [2, 6]. Thus, it seems fair to say now that the analog modeling is quite
successful in representing, at a qualitative level, most essential phenomena in detonations.

Returning to Fickett’s goal of “more easily studying various topics in detonation theory”, a question
arises as to specific benefits of such an ad hoc modeling for “real” problems of detonations. That
is: Given that the analogs qualitatively reproduce many detonation phenomena, how does it help us
understand detonations as described by the full system of reactive flow equations?

One obvious benefit of the simplified modeling is similar to that of the Burgers equation. That is, the
analog can be used to simply and relatively easily illustrate the essential theoretical ideas involved in
modeling detonations by physical systems of governing equations. These include the ZND theory, in
which the idea of imposing sonic conditions is often non-trivial, especially in systems with multiple
chemical reactions. Intricacies of linear stability analysis of detonations either by means of the Laplace
transform or normal modes can also be relatively easily explained with the analog models [4]. New
ideas and algorithms can be much more easily tested on the analog than on the full reactive flow system.
For example, the method of transonic integration in non-ideal detonations (which can be generalized to
the full Euler system) [3] is quite easy to illustrate and implement numerically with the analog model.

Development of numerical algorithms for hyperbolic systems is greatly benefitted by variety of test
problems for which exact solutions are known or which are easier to implement than the full system.
For example, shallow-water equations consisting of a hyperbolic system of two equations have long
been used in explaining variety of algorithms in computational fluid dynamics [17]. It is well known
that detonations present significant challenges for numerical algorithms in view of sensitive dependence
of detonation dynamics on problem parameters and on algorithmic details. Simplified analogs that retain
much of the dynamical complexity of real detonations can therefore serve as rigorous and at the same
time easy to implement test problems.

Most importantly, perhaps, the ability of a simple analog to mimic much of the dynamics of real detona-
tions is a strong motivation for the development of rational asymptotic theories of detonation that may
be able to achieve the same level of predictive capabilities. Indeed, this is exactly how the recent weakly
nonlinear theory [5] was developed.

2 Interplay of analogs and physical systems

To illustrate some of the details involved in analog modeling, here we summarize key mathematical
ideas of detonation theory. A detonation is by definition a shock wave that is driven by chemical energy
released in a combustible medium, whereby the chemical reactions are initiated as a result of the shock
compression and heating. At the most basic level (i.e. when dissipative processes are neglected), deto-
nations can be described by the reactive Euler equations which in one space dimension can be written
as

ut +A (u)ux = s (u) , (1)
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where u = (ρ, u, e, λ)T is the state vector with ρ, u, e, and λ being the density, particle velocity, internal
energy, and species concentration, respectively. A is the Jacobian of the flux vector, and s is the source
term containing contributions from chemical reactions. As a typical example, for a one-step reaction,
the species equation in this system would be λt + uλx = ω, where ω = k (1− λ) exp (−E/RT ), E is
the activation energy, k is the pre-exponential constant factor, and R is the universal gas constant.

If one looks for steady traveling wave solutions of equation (1) as u = U (x−Dt) with the constant
and unknown wave speed D, then the system becomes

(A−DI)U′ = s (U) . (2)

The most important property of the mathematical model represented by equation (2), which is at the
basis of the ZND theory of self-sustained detonations, is the possible presence of a sonic state in the
flow. This occurs if the solution U is such that A − DI is singular at some point in the flow (which
is the sonic point by definition). Since A has eigenvalues u and u ± c, where c is the local speed of
sound, then A − DI has eigenvalues U = u − D, U ± c. Suppose, the wave propagates from left to
right, in which case u > 0, D > 0, and U < 0. Then, A can be singular only at the point where
U + c = 0. If such a point exists (call it x∗), the wave is called self-sustained and the point x∗ is called
the Chapman-Jouguet (CJ) point. A regular solution of equation (2) is obtained by demanding that U
has no singularity at x∗. This amounts to multiplying equation (2) by the left eigenvector lT+ of A−DI
corresponding to the eigenvalue λ+ = U + c and demanding that the left-hand side vanish at x∗, which
must happen if the derivatives of the solution remain finite at x∗. Therefore, the right-hand side of that
equation must vanish as well, i.e. lT+s = 0. These two conditions at x = x∗: (1) U + c = 0 and (2)
lT+s = 0, serve as the regularity conditions that are needed to close the system and determine the wave
speed D.

From a physical point of view, what is important in the model is that the shock evolution is governed
by the dynamics of the reaction zone between the shock and the sonic point. The shock–reaction-zone
coupling takes place through C±,0 characteristics along which acoustic and entropy waves propagate
back and forth between the shock and the sonic point, and lead to resonant amplification of the waves
due to their nonlinear coupling if conditions in the reaction zone are favorable.

For the analog model to represent the same physical picture of the waves propagating from the shock
into the reaction zone and back, it is in general necessary to have at least two equations representing two
characteristic speeds. For example, the Fickett’s model,

ut + uux = −qλx, (3)

λt = ω(u, λ), (4)

in characteristic form is given by

u
du

dt
+ q

dλ

dt
= qω, on

dx

dt
= u, (5)

dλ

dt
= ω, on

dx

dt
= 0, (6)

and shows that, for the wave that propagates from left to right with u > 0, C+ characteristic, given by
dx/dt = u, propagates toward the shock, while the other characteristic, C0 say, does not propagate in
the given laboratory frame of reference, dx/dt = 0, but it does propagate away from the shock. The
communication among these waves and the shock is the main physical process that is responsible for
the self-sustained propagation of the shock in (3-4).
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It is well known that (3-4) does faithfully represent the steady-state ZND structure of detonations and
a number of other steady-state phenomena in detonations [8]. However, whether the system admits the
same instabilities as those present in the reactive Euler equations, remained unclear until recently.

The first resolution of this questions was proposed in [20], where the following extension of Fickett’s
model was analyzed,

ut + uux = −qλr,x, (7)

λi,t = −KiH(λi) exp
[
α
ρ

2D
− 1

]
, (8)

λr,t = Kr [1−H(λi)] (1− λr)
ν . (9)

Here H is the Heaviside function, Ki, Kr are rate constants, ν is the reaction order, and α is the
sensitivity parameter analogous to the activation energy. The induction period is described by function
λi which varies from 1 at the shock to 0 at the end of the induction period. When λi = 0 is reached,
the heat release process begins following (9), such that λr increases from 0 at the tail of the induction
zone to 1 at the end of the heat-release region. This model is shown in [20] to predict a sequence of
period-doubling bifurcations as the parameter α is increased. The larger α implies increased sensitivity
of the induction period to variations of the shock state.

In [5], the authors proposed that a simple choice of the rate function in the original model of Fickett
can also reproduce the unstable dynamics of detonations. The choice of the new function is motivated
by asymptotic developments in [5], which suggest that, in order to represent the physics of instability,
the rate function should likely have its dependence on λ such that the rate achieves a maximum inside
the reaction zone. In particular, if ω is taken in the form, ω = k(1 − λ) exp(au + bλ), with positive
parameters a and b, then the Fickett’s model

ut + uux = −λx, (10)

λt = −k(1− λ) exp (au+ bλ) , (11)

can be shown to contain instabilities provided that, e.g. a is large enough at a fixed b > 0.

Perhaps, the ultimate simplification is provided by the model given in [16], which consists of a single
scalar equation given by

ut + uux = f (x− xs(t), ẋs(t)) , (12)

where f is a forcing term that depends on the shock position, xs, its speed, ẋs, and the distance to the
shock, x − xs. It is assumed that f = 0 at x > xs, that f achieves its maximum value some distance
from the shock, and that it decays to zero sufficiently fast far from the shock. These properties of f are
motivated by the desire to make f behave like the rate of reaction in real detonations.

In [4], equation (12) is shown to precisely mimic essentially all characteristics of one-dimensional planar
detonations. It not only contains the ZND-like theory of steadily propagating detonations, but also all
elements of detonation linear stability theory, including various issues with radiation conditions, and
nonlinear dynamics involving the period-doubling transition to chaos. It can also be easily extended to
capture many other detonation phenomena, including cell formation in multiple spatial dimensions [3,6].

The model in [4,16] points out that instabilities can arise as a result of wave amplification in a resonant-
cavity-like reaction zone, such that slow waves propagating along the forward characteristics of the
reactive Burgers equation interact with the shock and the fast waves propagating away from the shock
into the reaction zone. The more sensitive the size of the cavity is to the state at the shock and the faster
the energy is released compared to the induction time, the more unstable the system is.

25th ICDERS – August 2–7, 2015 – Leeds 4



Kasimov, A. R. Detonation analogs revisited

3 Conclusions

Recent developments of the analog modeling of detonations originally introduced by Fickett have suc-
ceeded in reproducing many dynamical features of detonations [3, 4, 6, 16, 20, 21]. It is shown, for
example, that a simple hyperbolic system of two partial differential equations is capable of predicting
steady-state traveling wave solutions, their linear instability, and nonlinear dynamics that are in close
qualitative agreement with corresponding properties of detonations in the reactive Euler equations.

These results have a number of important implications for understanding detonations. The analog mod-
els help elucidate the ideas and tools involved in describing various features of detonations, such as
sonic points, radiation conditions, multiplicity of solutions, instabilities, bifurcations, and others. They
highlight important effects responsible for particular trait in detonation structure and dynamics, which
can guide in theoretical developments in detonations within the framework of reactive Euler or Navier-
Stokes equations. Mathematical analog modeling is also helpful in getting insights into mechanisms
of physical analogs of detonations, whose theoretical description can be guided by the understanding
achieved with detonations. The analog models of detonations can be helpful in understanding the variety
of mathematical questions about hyperbolic systems sharing the same properties, namely the existence
and nature of instabilities, bifurcations, and complex attractors. Finally, these simple models can be
helpful as test systems for the development of numerical algorithms for hyperbolic systems.
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